Đường tròn \((\mathscr{C})\) tâm \(I(-2;1)\) và tiếp xúc với đường thẳng \(\Delta\colon3x-4y+5=0\) có phương trình là
\((x+2)^2+(y-1)^2=1\) | |
\((x+2)^2+(y-1)^2=\dfrac{1}{25}\) | |
\((x-2)^2+(y+1)^2=1\) | |
\((x+2)^2+(y-1)^2=4\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;3\right)\) và tiếp xúc với trục \(Ox\) có phương trình là
\(\left(x-2\right)^2+\left(y-3\right)^2=9\) | |
\(\left(x-2\right)^2+\left(y-3\right)^2=4\) | |
\(\left(x-2\right)^2+\left(y-3\right)^2=3\) | |
\(\left(x+2\right)^2+\left(y+3\right)^2=9\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;-3\right)\) và tiếp xúc với trục \(Oy\) có phương trình là
\(\left(x+2\right)^2+\left(y-3\right)^2=4\) | |
\(\left(x+2\right)^2+\left(y-3\right)^2=9\) | |
\(\left(x-2\right)^2+\left(y+3\right)^2=4\) | |
\(\left(x-2\right)^2+\left(y+3\right)^2=9\) |
Cho đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+5x+7y-3=0\). Tính khoảng cách từ tâm của \(\left(\mathscr{C}\right)\) đến trục \(Ox\).
\(5\) | |
\(7\) | |
\(\dfrac{7}{2}\) | |
\(\dfrac{5}{2}\) |
Tâm của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2-10x+1=0\) cách trục \(Oy\) một khoảng bằng
\(-5\) | |
\(0\) | |
\(10\) | |
\(5\) |
Viết phương trình tiếp tuyến của đường tròn $$\left(\mathscr{C}\right)\colon(x-2)^2+(y+4)^2=25$$biết tiếp tuyến vuông góc với đường thẳng \(d\colon3x-4y+5=0\).
\(4x+3y+5=0\) hoặc \(4x+3y+45=0\) | |
\(4x+3y+5=0\) hoặc \(4x+3y+3=0\) | |
\(4x+3y+29=0\) | |
\(4x+3y+29=0\) hoặc \(4x+3y-21=0\) |
Viết phương trình tiếp tuyến của đường tròn $$\left(\mathscr{C}\right)\colon(x-3)^2+(y+1)^2=5$$biết tiếp tuyến song song với đường thẳng \(d\colon2x+y+7=0\).
\(2x+y+1=0\) hoặc \(2x+y-1=0\) | |
\(2x+y=0\) hoặc \(2x+y-10=0\) | |
\(2x+y+10=0\) hoặc \(2x+y-10=0\) | |
\(2x+y=0\) hoặc \(2x+y+10=0\) |
Viết phương trình tiếp tuyến \(d\) của đường tròn $$\left(\mathscr{C}\right)\colon(x+2)^2+(y+2)^2=25$$tại điểm \(M(2;1)\).
\(d\colon-y+1=0\) | |
\(d\colon4x+3y+14=0\) | |
\(d\colon3x-4y-2=0\) | |
\(d\colon4x+3y-11=0\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua ba điểm \(O(0;0)\), \(A(8;0)\), \(B(0;6)\) có phương trình là
\((x-4)^2+(y-3)^2=25\) | |
\((x+4)^2+(y+3)^2=25\) | |
\((x-4)^2+(y-3)^2=5\) | |
\((x+4)^2+(y+3)^2=5\) |
Tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon(x-2)^2+(y+3)^2=16\) tại điểm \(N(2;1)\) là
\(d_2\colon\begin{cases}x=2\\ y=1-2t\end{cases}\) | |
\(d_3\colon y=-3\) | |
\(d_4\colon x=1\) | |
\(d_1\colon y=1\) |
Đường tròn \((\mathscr{C})\) tâm \(I(1;-5)\) và đi qua gốc tọa độ có phương trình là
\((x+1)^2+(y-5)^2=26\) | |
\((x+1)^2+(y-5)^2=\sqrt{26}\) | |
\((x-1)^2+(y+5)^2=26\) | |
\((x-1)^2+(y+5)^2=\sqrt{26}\) |
Đường tròn tâm \(O(0;0)\), bán kính \(R=1\) có phương trình là
\(x^2+(y+1)^2=1\) | |
\(x^2+y^2=1\) | |
\((x-1)^2+(y-1)^2=1\) | |
\((x+1)^2+(y+1)^2=1\) |
Đường tròn \((\mathscr{C})\colon x^2+y^2+12x-14y+4=0\) có dạng chính tắc là
\((x+6)^2+(y-7)^2=9\) | |
\((x+6)^2+(y-7)^2=81\) | |
\((x+6)^2+(y-7)^2=89\) | |
\((x+6)^2+(y-7)^2=\sqrt{89}\) |
Đường tròn \((\mathscr{C})\colon(x-1)^2+(y+2)^2=25\) có dạng khai triển là
\(x^2+y^2-2x+4y+30=0\) | |
\(x^2+y^2+2x-4y-20=0\) | |
\(x^2+y^2-2x+4y-20=0\) | |
\(x^2+y^2+2x-4y+30=0\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+4x-2y-8=0\), biết tiếp tuyến vuông góc với đường thẳng \(d\colon2x-3y+2018=0\).
\(3x+2y-17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y+9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y-17=0\) hoặc \(3x+2y+9=0\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y-1\right)^2=25\), biết tiếp tuyến song song với đường thẳng \(d\colon4x+3y+14=0\).
\(4x+3y+14=0\) hoặc \(4x+3y-36=0\) | |
\(4x+3y+14=0\) | |
\(4x+3y-36=0\) | |
\(4x+3y-14=0\) hoặc \(4x+3y-36=0\) |
Có bao nhiêu đường thẳng đi qua điểm \(N\left(-2;0\right)\) tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y+3\right)^2=4\)?
\(0\) | |
\(1\) | |
\(2\) | |
Vô số |
Cho đường tròn \(\left(\mathscr{C}\right)\colon\left(x-3\right)^2+\left(y+3\right)^2=1\). Qua điểm \(M\left(4;-3\right)\) có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\)?
\(0\) | |
\(1\) | |
\(2\) | |
Vô số |
Có bao nhiêu đường thẳng đi qua gốc tọa độ \(O\) và tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2-2x+4y-11=0\)?
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(-1;2\right)\), \(B\left(-2;3\right)\) và có tâm \(I\) thuộc đường thẳng \(\Delta\colon3x-y+10=0\). Phương trình của đường tròn \(\left(\mathscr{C}\right)\) là
\(\left(x+3\right)^2+\left(y-1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=5\) | |
\(\left(x+3\right)^2+\left(y-1\right)^2=5\) |