Một khối nón có chiều cao \(h\) và bán kính đáy \(r\). Khi đó thể tích của khối nón là
\(V=\pi h r^2\) | |
\(V=\dfrac{1}{3}\pi h r^2\) | |
\(V=\dfrac{1}{3}\pi h r\) | |
\(V=\pi h r\) |
Khối nón có chiều cao $h=3$cm và bán kính đáy $r=2$cm thì có thể tích bằng bao nhiêu?
$4\pi\text{ cm}^3$ | |
$16\pi\text{ cm}^3$ | |
$\dfrac{4}{3}\pi\text{ cm}^3$ | |
$4\pi\text{ cm}^2$ |
Cho khối nón có diện tích đáy $B=a^2$ và chiều cao $h=3a$. Thể tích của khối nón bằng
$a^3$ | |
$3a^3$ | |
$2a^3$ | |
$4a^3$ |
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy là $2a$ và chiều cao là $3a$. Thể tích của khối nón có đỉnh $S$ và đáy là đường tròn nội tiếp tứ giác $ABCD$ bằng
$4\pi a^3$ | |
$\pi a^3$ | |
$3\pi a^3$ | |
$2\pi a^3$ |
Xét khối nón $(\mathscr{N})$ có đỉnh và đường tròn đáy cùng nằm trên một mặt cầu bán kính bằng 2. Khi $(\mathscr{N})$ có độ dài đường sinh bằng $2\sqrt{3}$, thể tích của nó bằng
$2\sqrt{3}\pi$ | |
$3\pi$ | |
$6\sqrt{3}\pi$ | |
$\pi$ |
Một bình đựng nước dạng hình nón (không có nắp đậy), đựng đầy nước. Biết rằng chiều cao của bình gấp $3$ lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài là $\dfrac{16\pi}{9}\text{dm}^3$. Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (hình vẽ).
Tính bán kính đáy $R$ của bình nước.
$R=4$dm | |
$R=2$dm | |
$R=3$dm | |
$R=5$dm |
Cho khối nón có diện tích đáy $B=a^2$ và chiều cao $h=3a$. Thể tích của khối nón bằng
$a^3$ | |
$3a^3$ | |
$2a^3$ | |
$4a^3$ |
Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng $3$ lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón sao cho đỉnh khối nón nằm trên mặt cầu (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài.
Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh).
$\dfrac{1}{2}$ | |
$\dfrac{2}{3}$ | |
$\dfrac{4}{9}$ | |
$\dfrac{5}{9}$ |
Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng $a^2\sqrt{3}$. Tính thể tích $V$ của khối nón đã cho.
$V=\dfrac{\pi a^3\sqrt{3}}{3}$ | |
$V=\dfrac{\pi a^3\sqrt{3}}{2}$ | |
$V=\dfrac{\pi a^3\sqrt{3}}{6}$ | |
$V=\dfrac{\pi a^3\sqrt{6}}{6}$ |
Cho hình nón $S$ có chiều cao bằng $3a$. Mặt phẳng $\left(P\right)$ đi qua $S$ cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $AB=6\sqrt{3}a$. Biết khoảng cách từ tâm của đường tròn đáy đến $\left(P\right)$ bằng $\dfrac{3a\sqrt{2}}{2}$. Thể tích $V$ của khối nón bị giới hạn bởi hình nón đã cho bằng
$V=54\pi a^3$ | |
$V=108\pi a^3$ | |
$V=36\pi a^3$ | |
$V=18\pi a^3$ |
Cho khối nón đỉnh $S$ có bán kính đáy bằng $2\sqrt{3}a$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=4a$. Biết khoảng cách từ tâm của đáy đến mặt phẳng $(SAB)$ bằng $2a$, thể tích của khối nón đã cho bằng
$\dfrac{8\sqrt{2}}{3}\pi a^3$ | |
$4\sqrt{6}\pi a^3$ | |
$\dfrac{16\sqrt{3}}{3}\pi a^3$ | |
$8\sqrt{2}\pi a^3$ |
Công thức tính thể tích $V$ của khối nón có bán kính đáy $r$ và chiều cao $h$ là
$V=\pi rh$ | |
$V=\pi r^2h$ | |
$V=\dfrac{1}{3}\pi rh$ | |
$V=\dfrac{1}{3}\pi r^2h$ |
Cho hình nón có chiều cao bằng \(2\sqrt{5}\). Một mặt phẳng đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng \(9\sqrt{3}\). Thể tích của khối nón giới hạn bởi hình nón đã cho bằng
\(\dfrac{32\sqrt{5}\pi}{3}\) | |
\(32\pi\) | |
\(32\sqrt{5}\pi\) | |
\(96\pi\) |
Tính chiều cao \(h\) của khối nón có bán kính đáy bằng \(3\) và thể tích bằng \(36\pi\).
\(h=18\) | |
\(h=12\) | |
\(h=6\) | |
\(h=16\) |
Cho khối nón tròn xoay cao \(8\)cm và có độ dài đường sinh \(10\)cm. Tính thể tích của khối nón đã cho.
\(V=124\pi\text{ cm}^3\) | |
\(V=128\pi\text{ cm}^3\) | |
\(V=140\pi\text{ cm}^3\) | |
\(V=96\pi\text{ cm}^3\) |
Một khối nón có độ dài đường sinh \(\ell=13\)cm và bán kính đáy \(r=5\)cm. Tính thể tích khối nón đã cho.
\(V=100\pi\text{ cm}^3\) | |
\(V=300\pi\text{ cm}^3\) | |
\(V=20\pi\text{ cm}^3\) | |
\(V=\dfrac{325\pi}{3}\text{ cm}^3\) |
Diện tích xung quanh của hình nón có độ dài đường sinh \(l\) và bán kính đáy \(r\) bằng
\(4\pi rl\) | |
\(2\pi rl\) | |
\(\pi rl\) | |
\(\dfrac{1}{3}\pi rl\) |
Cho hình nón \((N)\) có chiều cao \(h\), bán kính đáy \(R\) và độ dài đường sinh \(\ell\). Công thức tính diện tích xung quanh \(S\) của \((N)\) là
\(S=\dfrac{1}{3}\pi R\ell\) | |
\(S=\pi R\ell\) | |
\(S=4\pi R^2\) | |
\(S=2\pi R\ell\) |
Cho hình nón có diện tích xung quanh bằng \(S_{\text{xq}}\) và bán kính đáy là \(r\). Công thức nào dưới đây dùng để tính đường sinh \(\ell\) của hình nón đã cho?
\(\ell=2\pi S_{\text{xq}}r\) | |
\(\ell=\dfrac{S_{\text{xq}}}{\pi r}\) | |
\(\ell=\dfrac{S_{\text{xq}}}{2\pi r}\) | |
\(\ell=\dfrac{2S_{\text{xq}}}{\pi r}\) |
Một vật rắn gồm một nửa hình cầu, một hình trụ và một hình nón có hình dạng và kích thước như hình bên dưới.
Thể tích của vật rắn đã cho bằng
$120\pi\text{ cm}^3$ | |
$144\pi\text{ cm}^3$ | |
$126\pi\text{ cm}^3$ | |
$111\pi\text{ cm}^3$ |