Ngân hàng bài tập

Bài tập tương tự

C

Trong tam giác \(ABC\) có

\(a=2R\cos A\)
\(a=2R\sin A\)
\(a=2R\tan A\)
\(a=R\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?

\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\)
\(a=2R\sin A\)
\(a=c\dfrac{\sin A}{\sin C}\)
\(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?

\(\cos B+\cos C=2\cos A\)
\(\sin B+\sin C=2\sin A\)
\(\sin B+\sin C=2\cos A\)
\(\sin B+\cos C=2\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(BC=10\), \(\widehat{A}=30^\circ\).Tính bán kính đường tròn ngoại tiếp tam giác \(ABC\).

\(10\)
\(\dfrac{10}{\sqrt{3}}\)
\(10\sqrt{3}\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có \(BC=a\), \(\widehat{BAC}=120^\circ\). Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là

\(R=\dfrac{a\sqrt{3}}{2}\)
\(R=\dfrac{a}{2}\)
\(R=\dfrac{a\sqrt{3}}{3}\)
\(R=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(\widehat{B}=120^\circ\), cạnh \(AC=2\sqrt{3}\)cm. Bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\) bằng

\(R=2\)cm
\(R=4\)cm
\(R=1\)cm
\(R=3\)cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\triangle ABC\) có các cạnh \(BC=a\), \(AC=b\), \(AB=c\). Diện tích của \(\triangle ABC\) là

\(S=\dfrac{1}{2}ac\sin C\)
\(S=\dfrac{1}{2}bc\sin B\)
\(S=\dfrac{1}{2}ac\sin B\)
\(S=\dfrac{1}{2}bc\sin C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là

\(S=\dfrac{a\cdot b\cdot c}{2R}\)
\(S=p\cdot R\)
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\)
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?

\(S=\dfrac{abc}{2R}\)
\(S=\dfrac{1}{2}ac\sin B\)
\(S=\dfrac{a+b+c}{2}r\)
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là

\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{3}{8}\)
\(\dfrac{4}{5}\)
\(\dfrac{8}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có độ dài ba cạnh là \(a=5\), \(b=7\) và \(c=10\). Phát biểu nào sau đây đúng nhất về số đo ba góc của \(ABC\)?

\(A>B>C\)
\(B< A< C\)
\(A< B< C\)
\(C< A< B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?

\(\dfrac{b^2+c^2-a^2}{2bc}\)
\(\dfrac{a^2+c^2-b^2}{2ac}\)
\(\dfrac{a^2+b^2-c^2}{2ab}\)
\(\dfrac{c}{2R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).

\(\dfrac{2\sqrt{6}}{3}\)
\(\dfrac{3\sqrt{6}}{2}\)
\(\sqrt{6}\)
\(\dfrac{3\sqrt{2}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Chọn đáp án sai: Một tam giác giải được nếu biết

Độ dài \(3\) cạnh
Độ dài \(2\) cạnh và một góc bất kỳ
Số đo \(3\) góc
Độ dài \(1\) cạnh và \(2\) góc bất kỳ
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác đều nội tiếp đường tròn bán kính \(R=4\)cm có diện tích là

\(12\sqrt{3}\)cm\(^2\)
\(13\sqrt{2}\)cm\(^2\)
\(13\)cm\(^2\)
\(15\)cm\(^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(a=4\), \(c=5\), \(\widehat{B}=150^\circ\). Tính diện tích tam giác \(ABC\).

\(S=10\)
\(S=10\sqrt{3}\)
\(S=5\)
\(S=5\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:

\(a^2=b^2+c^2-2bc\cos A\)
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\)
\(S=\dfrac{1}{2}ab\cos C\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(b=10\), \(c=20\). Diện tích của tam giác \(ABC\) bằng

\(50\sqrt{3}\)
\(50\)
\(50\sqrt{2}\)
\(50\sqrt{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.

$\dfrac{7\pi}{6}+1$
$\dfrac{9\pi}{8}+1$
$\dfrac{7\pi}{6}+2$
$\dfrac{9\pi}{8}+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.

$r=\dfrac{\sqrt{14}}{7}$
$r=\dfrac{2\sqrt{14}}{7}$
$r=2\sqrt{14}$
$r=\dfrac{6\sqrt{77}}{7}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự