Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$ |
![]() | $y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
![]() | $1$ |
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
Đạo hàm của hàm số $y=x^{2023}$ là
![]() | $y'=2023x^{2023}$ |
![]() | $y'=2022x^{2023}$ |
![]() | $y'=2023x^{2022}$ |
![]() | $y'=\dfrac{1}{2023}x^{2022}$ |
Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$ |
![]() | $y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
Đạo hàm của hàm số $y=(x+1)^\pi$ là
![]() | $y'=\pi(x+1)^\pi$ |
![]() | $y'=(\pi-1)(x+1)^{\pi-1}$ |
![]() | $y'=\pi(x+1)^{\pi-1}$ |
![]() | $y'=(x+1)^{\pi-1}$ |
Đạo hàm của hàm số $y=\ln\big(x^2+2\big)$ là
![]() | $y'=\dfrac{1}{x^2+2}$ |
![]() | $y'=\dfrac{x}{x^2+2}$ |
![]() | $y'=\dfrac{2}{x^2+2}$ |
![]() | $y'=\dfrac{2x}{x^2+2}$ |
Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\pi}$ là
![]() | $y'=\pi x^{\pi-1}$ |
![]() | $y'=x^{\pi-1}$ |
![]() | $y'=\dfrac{1}{\pi}x^{\pi-1}$ |
![]() | $y'=\pi x^{\pi}$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
![]() | $3$ |
![]() | $4$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(1;3)$ |
![]() | $(-\infty;-3)$ |
![]() | $(3;4)$ |
![]() | $(4;5)$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
![]() | $y'=\dfrac{1-\ln2x}{x^2}$ |
![]() | $y'=\dfrac{\ln2x}{2x}$ |
![]() | $y'=\dfrac{\ln2x}{x^2}$ |
![]() | $y'=\dfrac{1}{2x}$ |
Đạo hàm của hàm số $y=x^{-3}$ là
![]() | $y'=-x^{-4}$ |
![]() | $y'=-\dfrac{1}{2}x^{-2}$ |
![]() | $y'=-\dfrac{1}{3}x^{-4}$ |
![]() | $y'=-3x^{-4}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
![]() | $2f(0)-1$ |
![]() | $2f(-1)-4$ |
![]() | $2f(1)$ |
![]() | $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
![]() | $f(2)+\dfrac{2}{3}$ |
![]() | $f(-1)+\dfrac{2}{3}$ |
![]() | $\dfrac{2}{3}$ |
![]() | $f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
![]() | $x_0=-4$ |
![]() | $x_0=-1$ |
![]() | $x_0=3$ |
![]() | $x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
![]() | $\min\limits_{[-2;2]}h(x)=h(-2)$ |
![]() | $\max\limits_{[0;4]}h(x)=h(0)$ |
![]() | $\min\limits_{[-1;2]}h(x)=h(-1)$ |
![]() | $h(2)< h(4)< h(0)$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
![]() | $5$ |
![]() | $3$ |
![]() | $8$ |
![]() | $2$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu của $f'(x)$ như hình:
Hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
![]() | $4$ |
Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:
Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là
![]() | $9$ |
![]() | $3$ |
![]() | $7$ |
![]() | $5$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
![]() | $5$ |
![]() | $3$ |
![]() | $7$ |
![]() | $11$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.
Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?
![]() | $(-2;5)$ |
![]() | $(1;2)$ |
![]() | $(2;5)$ |
![]() | $(5;+\infty)$ |