Ngân hàng bài tập

Bài tập tương tự

C

Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng

$3$
$\sqrt{7}$
$\sqrt{3}$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định \(\mathscr{D}\) của hàm số \(y=(x+1)^{\tfrac{1}{3}}\) là

\(\mathscr{D}=\mathbb{R}\setminus\{-1\}\)
\(\mathscr{D}=(-1;+\infty)\)
\(\mathscr{D}=\mathbb{R}\)
\(\mathscr{D}=(-\infty;-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm đạo hàm của hàm số $$y=\left(x^2-x+1\right)^{\tfrac{1}{3}}$$

\(y'=\dfrac{2x-1}{\sqrt[3]{\left(x^2-x+1\right)^2}}\)
\(y'=\dfrac{1}{3\sqrt[3]{\left(x^2-x+1\right)^2}}\)
\(y'=\dfrac{2x-1}{3\sqrt[3]{x^2-x+1}}\)
\(y'=\dfrac{2x-1}{3\sqrt[3]{\left(x^2-x+1\right)^2}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=(x-1)^{\tfrac{1}{2}}\).

\(\mathscr{D}=(0;+\infty)\)
\(\mathscr{D}=[1;+\infty)\)
\(\mathscr{D}=(1;+\infty)\)
\(\mathscr{D}=\Bbb{R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số \(y=\left(x^2-3x-4\right)^{\tfrac{1}{3}}\) là

\((-\infty;-1)\cup(4;+\infty)\)
\(\Bbb{R}\setminus\{-1;4\}\)
\((-1;4)\)
\(\Bbb{R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số \(y=\left(3x-x^2\right)^{-\tfrac{3}{2}}\) là

\(\Bbb{R}\)
\((0;3)\)
\((-\infty;0)\cup(3;+\infty)\)
\(\Bbb{R}\setminus\{0;3\}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số \(y=\left(x^2-5x+6\right)^{-\tfrac{1}{3}}\) là

\((-\infty;2)\cup(3;+\infty)\)
\(\Bbb{R}\setminus\{2;3\}\)
\((2;3)\)
\(\Bbb{R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=x^{\sqrt{2}-1}$ là

$\big(-\infty;\sqrt{2}\big)$
$\mathbb{R}\setminus\{0\}$
$\mathbb{R}$
$(0;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=x^{2023}$ là

$y'=2023x^{2023}$
$y'=2022x^{2023}$
$y'=2023x^{2022}$
$y'=\dfrac{1}{2023}x^{2022}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là

$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$
$y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=(x+1)^\pi$ là

$y'=\pi(x+1)^\pi$
$y'=(\pi-1)(x+1)^{\pi-1}$
$y'=\pi(x+1)^{\pi-1}$
$y'=(x+1)^{\pi-1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\pi}$ là

$y'=\pi x^{\pi-1}$
$y'=x^{\pi-1}$
$y'=\dfrac{1}{\pi}x^{\pi-1}$
$y'=\pi x^{\pi}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=(x+2)^{-2022}$ là

$[-2;+\infty)$
$(-2;+\infty)$
$\mathbb{R}\setminus\{-2\}$
$\mathbb{R}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)=\big(1-\sqrt[4]{x}\big)\big(1+\sqrt[4]{x}\big)\big(1+\sqrt{x}\big)(1+x)$. Tính $f\left(\dfrac{1}{2^{64}}\right)$.

$1-\dfrac{1}{2^{128}}$
$1+\dfrac{1}{2^{64}}$
$1+\dfrac{1}{2^{128}}$
$1-\dfrac{1}{2^{64}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho đồ thị các hàm số $y=x^\alpha$ và $y=x^\beta$ trên khoảng $(0;+\infty)$.

Mệnh đề nào dưới đây đúng?

$0< \alpha< 1< \beta$
$\alpha< 0< 1< \beta$
$0< \beta< 1< \alpha$
$\beta< 0< 1< \alpha$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là

$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$
$y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=x^{-3}$ là

$y'=-x^{-4}$
$y'=-\dfrac{1}{2}x^{-2}$
$y'=-\dfrac{1}{3}x^{-4}$
$y'=-3x^{-4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=x^{-\pi}$ là

$\left(-\infty;0\right)$
$\mathbb{R}\setminus\{0\}$
$\left[0;+\infty\right)$
$\left(0;+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\tfrac{5}{2}}$ là

$y'=\dfrac{2}{7}x^{\tfrac{7}{2}}$
$y'=\dfrac{2}{5}x^{\tfrac{3}{2}}$
$y'=\dfrac{5}{2}x^{\tfrac{3}{2}}$
$y'=\dfrac{5}{2}x^{-\tfrac{3}{2}}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tập xác định của hàm số $y=x^{\sqrt{2}}$ là

$\mathbb{R}$
$\mathbb{R}\setminus\{0\}$
$(0;+\infty)$
$(2;+\infty)$
1 lời giải Sàng Khôn
Lời giải Tương tự