Ngân hàng bài tập

Bài tập tương tự

C

Tam giác \(ABC\) có ba cạnh \(a=5\), \(b=3\), \(c=5\). Số đo góc \(\widehat{BAC}\) là

\(\widehat{A}>60^\circ\)
\(\widehat{A}=30^\circ\)
\(\widehat{A}=45^\circ\)
\(\widehat{A}=90^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng

\(7\) cm
\(49\) cm
\(11,4\) cm
\(4,44\) cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?

\(\dfrac{b^2+c^2-a^2}{2bc}\)
\(\dfrac{a^2+c^2-b^2}{2ac}\)
\(\dfrac{a^2+b^2-c^2}{2ab}\)
\(\dfrac{c}{2R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng

\(-\dfrac{1}{6}\)
\(\dfrac{1}{6}\)
\(\dfrac{\sqrt{17}}{4}\)
\(-\dfrac{4}{25}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?

\(\cos B+\cos C=2\cos A\)
\(\sin B+\sin C=2\sin A\)
\(\sin B+\sin C=2\cos A\)
\(\sin B+\cos C=2\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng

\(115^\circ\)
\(75^\circ\)
\(60^\circ\)
\(53^\circ32'\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác \(ABC\) có \(a=8\), \(c=3\), \(\widehat{B}=60^\circ\). Độ dài cạnh \(b\) bằng bao nhiêu?

\(49\)
\(\sqrt{97}\)
\(7\)
\(\sqrt{61}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(b=7\), \(c=5\), \(\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của tam giác \(ABC\) là

\(8\)
\(\dfrac{7\sqrt{2}}{2}\)
\(80\sqrt{3}\)
\(8\sqrt{3}\)
3 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:

\(a^2=b^2+c^2-2bc\cos A\)
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\)
\(S=\dfrac{1}{2}ab\cos C\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong tam giác \(ABC\) có \(AB=2\)cm, \(AC=1\)cm, \(\widehat{A}=60^\circ\). Khi đó độ dài cạnh \(BC\) là

\(1\)cm
\(2\)cm
\(\sqrt{3}\)cm
\(\sqrt{5}\)cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(AB=3\), \(AC=4\) và \(\tan A=2\sqrt{2}\). Tính cạnh \(BC\).

\(\sqrt{13}\)
\(3\sqrt{2}\)
\(4\sqrt{2}\)
\(\sqrt{17}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(AC=10\), \(AB=6\). Tính cạnh \(BC\).

\(76\)
\(2\sqrt{19}\)
\(14\)
\(6\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó

\(\widehat{A}=75^\circ\)
\(\widehat{A}=60^\circ\)
\(\widehat{A}=45^\circ\)
\(\widehat{A}=30^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hai chiếc tàu thủy cùng xuất phát từ vị trí \(A\), đi thẳng theo hai hướng tạo với nhau một góc \(60^\circ\). Tàu thứ nhất chạy với tốc độ \(30\)km/h, tàu thứ hai chạy với tốc độ \(40\)km/h. Hỏi sau \(2\) giờ, khoảng cách giữa hai chiếc tàu là bao nhiêu km?

\(10\sqrt{13}\)
\(15\sqrt{13}\)
\(20\sqrt{13}\)
\(15\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tam giác \(ABC\) có ba cạnh \(a,\,b,\,c\) thỏa mãn điều kiện $$(a+b+c)(a+b-c)=3ab.$$Khi đó số đo góc \(\widehat{C}\) là

\(120^\circ\)
\(30^\circ\)
\(45^\circ\)
\(60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có độ dài ba cạnh là \(AB=2\), \(BC=3\), \(CA=4\). Tính số đo góc \(\widehat{ABC}\) (chọn kết quả gần đúng nhất).

\(60^\circ\)
\(104^\circ29'\)
\(75^\circ31'\)
\(120^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.

$r=\dfrac{\sqrt{14}}{7}$
$r=\dfrac{2\sqrt{14}}{7}$
$r=2\sqrt{14}$
$r=\dfrac{6\sqrt{77}}{7}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng

$a^2\dfrac{\sqrt{3}}{4}$
$a^2\dfrac{\sqrt{6}}{4}$
$a^2\dfrac{\sqrt{3}}{2}$
$a^2\dfrac{\sqrt{6}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.

$R=\dfrac{85}{8}$cm
$R=\dfrac{85}{2}$cm
$R=\dfrac{7}{4}$cm
$R=\dfrac{7}{2}$cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.

$S=16\text{ cm}^2$
$S=24\text{ cm}^2$
$S=48\text{ cm}^2$
$S=84\text{ cm}^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự