Đạo hàm của hàm số $y=\ln\big(x^2+2\big)$ là
![]() | $y'=\dfrac{1}{x^2+2}$ |
![]() | $y'=\dfrac{x}{x^2+2}$ |
![]() | $y'=\dfrac{2}{x^2+2}$ |
![]() | $y'=\dfrac{2x}{x^2+2}$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
![]() | $y'=\dfrac{1-\ln2x}{x^2}$ |
![]() | $y'=\dfrac{\ln2x}{2x}$ |
![]() | $y'=\dfrac{\ln2x}{x^2}$ |
![]() | $y'=\dfrac{1}{2x}$ |
Tìm đạo hàm của hàm số \(y=\log_2(2x+1)\).
![]() | \(y'=\dfrac{1}{2x+1}\) |
![]() | \(y'=\dfrac{1}{(2x+1)\ln2}\) |
![]() | \(y'=\dfrac{2}{(2x+1)\ln2}\) |
![]() | \(y'=\dfrac{2}{2x+1}\) |
Tìm đạo hàm của hàm số \(y=\ln\left(1+\mathrm{e}^{2x}\right)\).
![]() | \(y'=\dfrac{-2\mathrm{e}^{2x}}{\left(1+\mathrm{e}^{2x}\right)^2}\) |
![]() | \(y'=\dfrac{\mathrm{e}^{2x}}{1+\mathrm{e}^{2x}}\) |
![]() | \(y'=\dfrac{1}{1+\mathrm{e}^{2x}}\) |
![]() | \(y'=\dfrac{2\mathrm{e}^{2x}}{1+\mathrm{e}^{2x}}\) |
Tìm đạo hàm của hàm số \(y=\ln\left(x^2+2\right)\).
![]() | \(y'=\dfrac{2x}{x^2+2}\) |
![]() | \(y'=\dfrac{x}{x^2+1}\) |
![]() | \(y'=\dfrac{2x+2}{x^2+2}\) |
![]() | \(y'=\dfrac{1}{x^2+2}\) |
Tìm đạo hàm của hàm số \(y=\ln\dfrac{1}{x}\).
![]() | \(y'=-\dfrac{1}{x}\) |
![]() | \(y'=-\dfrac{1}{x^3}\) |
![]() | \(y'=\dfrac{1}{x}\) |
![]() | \(y'=-x\) |
Hàm số \(f(x)=\log_3(\sin x)\) có đạo hàm là
![]() | \(f'(x)=\dfrac{\tan x}{\ln3}\) |
![]() | \(f'(x)=\cot x\cdot\ln3\) |
![]() | \(f'(x)=\dfrac{1}{\sin x\cdot\ln3}\) |
![]() | \(f'(x)=\dfrac{\cot x}{\ln3}\) |
Tìm đạo hàm của hàm số \(y=\log(1-x)\).
![]() | \(y'=\dfrac{1}{(x-1)\ln10}\) |
![]() | \(y'=\dfrac{1}{x-1}\) |
![]() | \(y'=\dfrac{1}{1-x}\) |
![]() | \(y'=\dfrac{1}{(1-x)\ln10}\) |
Tìm đạo hàm của hàm số \(y=\log\left(x^2-2x\right)\).
![]() | \(y'=\dfrac{2x-2}{\left(x^2-2x\right)\ln10}\) |
![]() | \(y'=\dfrac{1}{x^2-x}\) |
![]() | \(y'=\dfrac{2x-2}{x^2-x}\) |
![]() | \(y'=\dfrac{(2x-2)\ln10}{x^2-2x}\) |
Tìm đạo hàm của hàm số \(y=\log_5\left(x^2+x+1\right)\).
![]() | \(y'=\dfrac{2x+1}{\left(x^2+x+1\right)\ln5}\) |
![]() | \(y'=\dfrac{2x+1}{x^2+x+1}\) |
![]() | \(y'=(2x+1)\ln5\) |
![]() | \(y'=\dfrac{1}{\left(x^2+x+1\right)\ln5}\) |
Tìm đạo hàm của hàm số \(y=\log_3\left(x^3-x\right)\).
![]() | \(y'=\dfrac{3x^2-1}{\left(x^3-x\right)\ln3}\) |
![]() | \(y'=\dfrac{3x^2-1}{x^3-x}\) |
![]() | \(y'=\dfrac{1}{\left(x^3-x\right)\ln3}\) |
![]() | \(y'=\dfrac{3x-1}{\left(x^3-x\right)\ln3}\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
![]() | $1$ |
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
![]() | $\dfrac{4}{5}$ |
![]() | $\dfrac{4}{3\ln2}$ |
![]() | $\dfrac{4}{2\ln5}$ |
![]() | $2$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
![]() | $y'=\dfrac{1-\ln2x}{x^2}$ |
![]() | $y'=\dfrac{\ln2x}{2x}$ |
![]() | $y'=\dfrac{\ln2x}{x^2}$ |
![]() | $y'=\dfrac{1}{2x}$ |
Đạo hàm của hàm số $y=\log_2(x-1)$ là
![]() | $y'=\dfrac{x-1}{\ln2}$ |
![]() | $y'=\dfrac{1}{\ln2}$ |
![]() | $y'=\dfrac{1}{(x-1)\ln2}$ |
![]() | $y'=\dfrac{1}{x-1}$ |
Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=\log_3x$ là
![]() | $y'=\dfrac{1}{x}$ |
![]() | $y'=\dfrac{1}{x\ln3}$ |
![]() | $y'=\dfrac{\ln3}{x}$ |
![]() | $y'=-\dfrac{1}{x\ln3}$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
![]() | $3$ |
![]() | $4$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(1;3)$ |
![]() | $(-\infty;-3)$ |
![]() | $(3;4)$ |
![]() | $(4;5)$ |
Tính đạo hàm của hàm số $y=2x^3+x\ln x$ tại điểm $x=1$.
![]() | $6$ |
![]() | $2$ |
![]() | $3$ |
![]() | $7$ |
Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$ |
![]() | $y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |