Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
$\dfrac{4}{5}$ | |
$\dfrac{4}{3\ln2}$ | |
$\dfrac{4}{2\ln5}$ | |
$2$ |
Đạo hàm của hàm số \(y=\log_3(x+1)-2\ln(x-1)+2x\) tại điểm \(x=2\) bằng
\(\dfrac{1}{3}\) | |
\(\dfrac{1}{3\ln3}+2\) | |
\(\dfrac{1}{3\ln3}-1\) | |
\(\dfrac{1}{3\ln3}\) |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
$y'=\dfrac{1-\ln2x}{x^2}$ | |
$y'=\dfrac{\ln2x}{2x}$ | |
$y'=\dfrac{\ln2x}{x^2}$ | |
$y'=\dfrac{1}{2x}$ |
Đạo hàm của hàm số $y=\ln\big(x^2+2\big)$ là
$y'=\dfrac{1}{x^2+2}$ | |
$y'=\dfrac{x}{x^2+2}$ | |
$y'=\dfrac{2}{x^2+2}$ | |
$y'=\dfrac{2x}{x^2+2}$ |
Đạo hàm của hàm số $y=\log_2(x-1)$ là
$y'=\dfrac{x-1}{\ln2}$ | |
$y'=\dfrac{1}{\ln2}$ | |
$y'=\dfrac{1}{(x-1)\ln2}$ | |
$y'=\dfrac{1}{x-1}$ |
Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=\log_3x$ là
$y'=\dfrac{1}{x}$ | |
$y'=\dfrac{1}{x\ln3}$ | |
$y'=\dfrac{\ln3}{x}$ | |
$y'=-\dfrac{1}{x\ln3}$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
$y'=\dfrac{1-\ln2x}{x^2}$ | |
$y'=\dfrac{\ln2x}{2x}$ | |
$y'=\dfrac{\ln2x}{x^2}$ | |
$y'=\dfrac{1}{2x}$ |
Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).
$3$(A) | |
$25$(A) | |
$10$(A) | |
$2$(A) |
Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?
$64$m/s | |
$46$m/s | |
$56$m/s | |
$22$m/s |
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
$0$ | |
$-2$ | |
$2$ | |
$1$ |
Một chất điểm chuyển động có phương trình $s=t^3+3t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=2$ (giây).
$12$m/s | |
$15$m/s | |
$14$m/s | |
$7$m/s |
Cho hàm số $y=f\left(x\right)$ xác định trên $\left(a;b\right)$, $x_0\in\left(a;b\right)$. Đạo hàm của hàm số $y=f\left(x\right)$ tại điểm $x_0$ là
$f'\left(x_0\right)=\lim\limits_{\Delta y\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta x}{\Delta y}$ |
Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=\log_2x$ là
$y'=\dfrac{1}{x\ln2}$ | |
$y'=\dfrac{\ln2}{x}$ | |
$y'=\dfrac{1}{x}$ | |
$y'=\dfrac{1}{2x}$ |
Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.
$t=2$ | |
$t=0.5$ | |
$t=2.5$ | |
$t=1$ |
Cho chuyển động thẳng xác định bởi phương trình $S=-t^3+3t^2+9t$, trong đó $t$ tính bằng giây và $S$ tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
$12\,\text{m/s}$ | |
$0\,\text{m/s}$ | |
$11\,\text{m/s}$ | |
$6\,\text{m/s}$ |
Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?
$17$(m/s) | |
$18$(m/s) | |
$28$(m/s) | |
$13$(m/s) |
Một chuyển động thẳng xác định bởi phương trình $s=t^3-3t^2+5t+2$, trong đó $t$ tính bằng giây và $s$ tính bằng mét. Gia tốc của chuyển động khi $t=3$ là
$24\text{m/s}^2$ | |
$17\text{m/s}^2$ | |
$14\text{m/s}^2$ | |
$12\text{m/s}^2$ |