Ngân hàng bài tập

Bài tập tương tự

B

Cho tam giác \(ABC\) có \(BC=a\), \(\widehat{BAC}=120^\circ\). Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là

\(R=\dfrac{a\sqrt{3}}{2}\)
\(R=\dfrac{a}{2}\)
\(R=\dfrac{a\sqrt{3}}{3}\)
\(R=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(\widehat{B}=120^\circ\), cạnh \(AC=2\sqrt{3}\)cm. Bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\) bằng

\(R=2\)cm
\(R=4\)cm
\(R=1\)cm
\(R=3\)cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong tam giác \(ABC\) có

\(a=2R\cos A\)
\(a=2R\sin A\)
\(a=2R\tan A\)
\(a=R\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?

\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\)
\(a=2R\sin A\)
\(a=c\dfrac{\sin A}{\sin C}\)
\(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác đều nội tiếp đường tròn bán kính \(R=4\)cm có diện tích là

\(12\sqrt{3}\)cm\(^2\)
\(13\sqrt{2}\)cm\(^2\)
\(13\)cm\(^2\)
\(15\)cm\(^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.

$R=\dfrac{85}{8}$cm
$R=\dfrac{85}{2}$cm
$R=\dfrac{7}{4}$cm
$R=\dfrac{7}{2}$cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?

\(\cos B+\cos C=2\cos A\)
\(\sin B+\sin C=2\sin A\)
\(\sin B+\sin C=2\cos A\)
\(\sin B+\cos C=2\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác \(ABC\) với \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\) có bán kính đường tròn ngoại tiếp bằng

\(R=\dfrac{\sqrt{2}}{3}\)
\(R=\dfrac{\sqrt{2}}{2}\)
\(R=\sqrt{2}\)
\(R=\sqrt{3}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một tam giác có ba cạnh là \(52,\,56,\,60\). Bán kính đường tròn ngoại tiếp tam giác đó là

\(\dfrac{65}{4}\)
\(40\)
\(32,5\)
\(65,8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong \(\triangle ABC\) với \(BC=a\), \(AC=b\), \(AB=c\). Mệnh đề nào dưới đây sai?

\(a=\dfrac{b\sin A}{\sin B}\)
\(\sin C=\dfrac{c\sin A}{a}\)
\(a=2R\sin A\)
\(b=R\tan B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.

$r=\dfrac{\sqrt{14}}{7}$
$r=\dfrac{2\sqrt{14}}{7}$
$r=2\sqrt{14}$
$r=\dfrac{6\sqrt{77}}{7}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là

\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{3}{8}\)
\(\dfrac{4}{5}\)
\(\dfrac{8}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).

\(\dfrac{2\sqrt{6}}{3}\)
\(\dfrac{3\sqrt{6}}{2}\)
\(\sqrt{6}\)
\(\dfrac{3\sqrt{2}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một tam giác có ba cạnh là \(26\), \(28\), \(30\). Bán kính vòng tròn nội tiếp là

\(16\)
\(8\)
\(4\)
\(4\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác \(ABC\) vuông cân tại \(A\) có \(AB=a\). Đường tròn nội tiếp tam giác \(ABC\) có bán kính \(r\) bằng

\(\dfrac{a}{2}\)
\(\dfrac{a}{\sqrt{2}}\)
\(\dfrac{a}{2+\sqrt{2}}\)
\(\dfrac{a}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) có \(a=4\), \(c=5\), \(\widehat{B}=150^\circ\). Tính diện tích tam giác \(ABC\).

\(S=10\)
\(S=10\sqrt{3}\)
\(S=5\)
\(S=5\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(b=10\), \(c=20\). Diện tích của tam giác \(ABC\) bằng

\(50\sqrt{3}\)
\(50\)
\(50\sqrt{2}\)
\(50\sqrt{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác \(ABC\) vuông tại \(A\) có \(AC=6\)cm, \(BC=10\)cm. Đường tròn nội tiếp tam giác có bán kính \(r\) bằng

\(1\)cm
\(\sqrt{2}\)cm
\(2\)cm
\(3\)cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\triangle ABC\) có các cạnh \(BC=a\), \(AC=b\), \(AB=c\). Diện tích của \(\triangle ABC\) là

\(S=\dfrac{1}{2}ac\sin C\)
\(S=\dfrac{1}{2}bc\sin B\)
\(S=\dfrac{1}{2}ac\sin B\)
\(S=\dfrac{1}{2}bc\sin C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tứ giác lồi \(ABCD\) có \(\widehat{ABC}=\widehat{ADC}=90^\circ\), \(\widehat{BAD}=120^\circ\) và \(BD=a\sqrt{3}\). Tính \(AC\).

\(AC=2a\)
\(AC=a\sqrt{3}\)
\(AC=a\)
\(AC=a\sqrt{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự