Cho tam giác \(ABC\) có \(BC=a\), \(\widehat{BAC}=120^\circ\). Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là
![]() | \(R=\dfrac{a\sqrt{3}}{2}\) |
![]() | \(R=\dfrac{a}{2}\) |
![]() | \(R=\dfrac{a\sqrt{3}}{3}\) |
![]() | \(R=a\) |
Cho tam giác \(ABC\) có \(\widehat{B}=120^\circ\), cạnh \(AC=2\sqrt{3}\)cm. Bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\) bằng
![]() | \(R=2\)cm |
![]() | \(R=4\)cm |
![]() | \(R=1\)cm |
![]() | \(R=3\)cm |
Trong tam giác \(ABC\) có
![]() | \(a=2R\cos A\) |
![]() | \(a=2R\sin A\) |
![]() | \(a=2R\tan A\) |
![]() | \(a=R\sin A\) |
Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?
![]() | \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\) |
![]() | \(a=2R\sin A\) |
![]() | \(a=c\dfrac{\sin A}{\sin C}\) |
![]() | \(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\) |
Tam giác đều nội tiếp đường tròn bán kính \(R=4\)cm có diện tích là
![]() | \(12\sqrt{3}\)cm\(^2\) |
![]() | \(13\sqrt{2}\)cm\(^2\) |
![]() | \(13\)cm\(^2\) |
![]() | \(15\)cm\(^2\) |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
![]() | $R=\dfrac{85}{8}$cm |
![]() | $R=\dfrac{85}{2}$cm |
![]() | $R=\dfrac{7}{4}$cm |
![]() | $R=\dfrac{7}{2}$cm |
Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?
![]() | \(\cos B+\cos C=2\cos A\) |
![]() | \(\sin B+\sin C=2\sin A\) |
![]() | \(\sin B+\sin C=2\cos A\) |
![]() | \(\sin B+\cos C=2\sin A\) |
Tam giác \(ABC\) với \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\) có bán kính đường tròn ngoại tiếp bằng
![]() | \(R=\dfrac{\sqrt{2}}{3}\) |
![]() | \(R=\dfrac{\sqrt{2}}{2}\) |
![]() | \(R=\sqrt{2}\) |
![]() | \(R=\sqrt{3}\) |
Một tam giác có ba cạnh là \(52,\,56,\,60\). Bán kính đường tròn ngoại tiếp tam giác đó là
![]() | \(\dfrac{65}{4}\) |
![]() | \(40\) |
![]() | \(32,5\) |
![]() | \(65,8\) |
Trong \(\triangle ABC\) với \(BC=a\), \(AC=b\), \(AB=c\). Mệnh đề nào dưới đây sai?
![]() | \(a=\dfrac{b\sin A}{\sin B}\) |
![]() | \(\sin C=\dfrac{c\sin A}{a}\) |
![]() | \(a=2R\sin A\) |
![]() | \(b=R\tan B\) |
Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
![]() | $r=\dfrac{\sqrt{14}}{7}$ |
![]() | $r=\dfrac{2\sqrt{14}}{7}$ |
![]() | $r=2\sqrt{14}$ |
![]() | $r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là
![]() | \(\dfrac{\sqrt{3}}{2}\) |
![]() | \(\dfrac{3}{8}\) |
![]() | \(\dfrac{4}{5}\) |
![]() | \(\dfrac{8}{9}\) |
Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).
![]() | \(\dfrac{2\sqrt{6}}{3}\) |
![]() | \(\dfrac{3\sqrt{6}}{2}\) |
![]() | \(\sqrt{6}\) |
![]() | \(\dfrac{3\sqrt{2}}{2}\) |
Một tam giác có ba cạnh là \(26\), \(28\), \(30\). Bán kính vòng tròn nội tiếp là
![]() | \(16\) |
![]() | \(8\) |
![]() | \(4\) |
![]() | \(4\sqrt{2}\) |
Tam giác \(ABC\) vuông cân tại \(A\) có \(AB=a\). Đường tròn nội tiếp tam giác \(ABC\) có bán kính \(r\) bằng
![]() | \(\dfrac{a}{2}\) |
![]() | \(\dfrac{a}{\sqrt{2}}\) |
![]() | \(\dfrac{a}{2+\sqrt{2}}\) |
![]() | \(\dfrac{a}{3}\) |
Cho tam giác \(ABC\) có \(a=4\), \(c=5\), \(\widehat{B}=150^\circ\). Tính diện tích tam giác \(ABC\).
![]() | \(S=10\) |
![]() | \(S=10\sqrt{3}\) |
![]() | \(S=5\) |
![]() | \(S=5\sqrt{3}\) |
Tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(b=10\), \(c=20\). Diện tích của tam giác \(ABC\) bằng
![]() | \(50\sqrt{3}\) |
![]() | \(50\) |
![]() | \(50\sqrt{2}\) |
![]() | \(50\sqrt{5}\) |
Tam giác \(ABC\) vuông tại \(A\) có \(AC=6\)cm, \(BC=10\)cm. Đường tròn nội tiếp tam giác có bán kính \(r\) bằng
![]() | \(1\)cm |
![]() | \(\sqrt{2}\)cm |
![]() | \(2\)cm |
![]() | \(3\)cm |
Cho \(\triangle ABC\) có các cạnh \(BC=a\), \(AC=b\), \(AB=c\). Diện tích của \(\triangle ABC\) là
![]() | \(S=\dfrac{1}{2}ac\sin C\) |
![]() | \(S=\dfrac{1}{2}bc\sin B\) |
![]() | \(S=\dfrac{1}{2}ac\sin B\) |
![]() | \(S=\dfrac{1}{2}bc\sin C\) |
Cho tứ giác lồi \(ABCD\) có \(\widehat{ABC}=\widehat{ADC}=90^\circ\), \(\widehat{BAD}=120^\circ\) và \(BD=a\sqrt{3}\). Tính \(AC\).
![]() | \(AC=2a\) |
![]() | \(AC=a\sqrt{3}\) |
![]() | \(AC=a\) |
![]() | \(AC=a\sqrt{5}\) |