Ngân hàng bài tập

Bài tập tương tự

C

Cho lục giác đều \(ABCDEF\) có tâm \(O\).

Có bao nhiêu vectơ (khác \(\vec{0}\)) ngược hướng với vectơ \(\overrightarrow{OB}\) mà có điểm đầu và điểm cuối là một trong các đỉnh và tâm của \(ABCDEF\)?

\(3\)
\(9\)
\(5\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho vectơ \(\overrightarrow{AB}\neq\vec{0}\) và một điểm \(C\). Có bao nhiêu điểm \(D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\)?

Vô số
Không có
\(1\) điểm
\(2\) điểm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tứ giác \(ABCD\). Có bao nhiêu vectơ khác \(\vec{0}\) có điểm đầu và điểm cuối là các đỉnh của tứ giác?

\(4\)
\(6\)
\(8\)
\(12\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Từ ba điểm \(A,\,B,\,C\) phân biệt, có thể lập được bao nhiêu vectơ (khác vectơ \(\vec{0}\)) có điểm đầu, điểm cuối là hai trong ba điểm đã cho?

\(3\)
\(4\)
\(5\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho vectơ \(\vec{a}\). Có bao nhiêu vectơ bằng với \(\vec{a}\)?

Vô số
Duy nhất
Không tồn tại
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là

$(0;-4;3)$
$(-3;0;4)$
$(0;3;4)$
$(0;-3;4)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, các véctơ đơn vị trên các trục $Ox$, $Oy$, $Oz$ lần lượt là $\overrightarrow{i}$, $\overrightarrow{j}$, $\overrightarrow{k}$, cho điểm $M\left(2;-1; 1\right)$. Khẳng định nào sau đây là đúng?

$\overrightarrow{OM}=\overrightarrow{k}+\overrightarrow{j}+2\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{k}-\overrightarrow{j}+\overrightarrow{i}$
$\overrightarrow{OM}=2\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}$
$\overrightarrow{OM}=\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng

$3$
$6$
$2$
$3\sqrt{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian, với $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ là ba vectơ bất kỳ, mệnh đề nào dưới đây đúng?

$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}-\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}-\overrightarrow{a}\cdot \overrightarrow{c}$
$\overrightarrow{a}\left(\overrightarrow{b}+\overrightarrow{c}\right)=\overrightarrow{a}\cdot \overrightarrow{b}+\overrightarrow{b}\cdot \overrightarrow{c}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian, cho hình bình hành $ABCD$. Vectơ $\overrightarrow{AB}+\overrightarrow{AD}$ bằng

$\overrightarrow{AC}$
$\overrightarrow{BC}$
$\overrightarrow{BD}$
$\overrightarrow{CA}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, vectơ $\overrightarrow{x}=\overrightarrow{i}-3\overrightarrow{j}+2\overrightarrow{k}$ có tọa độ là

$(1;3;2)$
$(1;-3;2)$
$(1;2;3)$
$(0;-3;2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong mặt phẳng $Oxy$, vectơ $\overrightarrow{a}=-9\overrightarrow{i}+4\overrightarrow{j}$ có tọa độ là

$(4;-9)$
$\left(-9\overrightarrow{i};4\overrightarrow{j}\right)$
$(-9;4)$
$\left(-\overrightarrow{i};\overrightarrow{j}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng $Oxy$, cho vectơ $\overrightarrow{u}=2\overrightarrow{j}-5\overrightarrow{i}$. Tọa độ của $\overrightarrow{u}$ là

$\overrightarrow{u}=(-5;2)$
$\overrightarrow{u}=(2;-5)$
$\overrightarrow{u}=(5;2)$
$\overrightarrow{u}=(2;5)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Phép vị tự tâm $O$ tỉ số $-3$ lần lượt biến hai điểm $A,\,B$ thành hai điểm $C,\,D$. Mệnh đề nào sau đây đúng?

$\overrightarrow{AC}=-3\overrightarrow{BD}$
$3\overrightarrow{AB}=\overrightarrow{DC}$
$\overrightarrow{AB}=-3\overrightarrow{CD}$
$\overrightarrow{AB}=\dfrac{1}{3}\overrightarrow{CD}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho mặt phẳng \(\left(P\right)\colon2x-3z-1=0\). Khi đó \(\left(P\right)\) có một vectơ pháp tuyến là

\(\overrightarrow{n}=\left(2;-3;1\right)\)
\(\overrightarrow{n}=\left(2;-3;0\right)\)
\(\overrightarrow{n}=\left(2;0;-3\right)\)
\(\overrightarrow{n}=\left(2;-3;-1\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.

\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\)
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\)
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\)
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:

\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\)
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng \(Oxy\), tọa độ của vectơ \(\vec{i}+\vec{j}\) là

\((0;1)\)
\((1;-1)\)
\((-1;1)\)
\((1;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?

\(\vec{a},\,\vec{c}\) cùng phương
\(\vec{b},\,\vec{c}\) cùng phương
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\neq\vec{0}\). Điều kiện cần và đủ để ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng là

\(\vec{a}\cdot\vec{b}\cdot\vec{c}=\vec{0}\)
\(\left[\vec{a},\vec{b}\right]\cdot\vec{c}=0\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đôi một vuông góc
\(\left|\vec{a}\right|=\left|\vec{b}\right|=\left|\vec{c}\right|\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự