Cho hình vuông \(ABCD\) cạnh \(a\), tâm \(O\). Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\).
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\sqrt{2}\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a}{2}\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a\sqrt{2}}{2}\) |
Cho hình bình hành \(ABCD\), có \(I\) là giao điểm của hai đường chéo. Khẳng định nào sau đây là sai?
\(\overrightarrow{IA}+\overrightarrow{IC}=\overrightarrow{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) | |
\(\overrightarrow{AB}=\overrightarrow{DC}\) | |
\(\overrightarrow{AC}=\overrightarrow{BD}\) |
Gọi \(C\) là trung điểm của đoạn thẳng \(AB\). Hãy chọn khẳng định đúng trong các khẳng định sau:
\(\overrightarrow{CA}=\overrightarrow{CB}\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CB}\) ngược hướng | |
\(\left|\overrightarrow{AC}\right|=\overrightarrow{CB}\) |
Cho hình bình hành \(ABCD\), tâm \(O\). Đẳng thức nào sau đây sai?
\(\overrightarrow{BA}=\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(\overrightarrow{OA}=\overrightarrow{OC}\) | |
\(\overrightarrow{AO}=\overrightarrow{OC}\) |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\), \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BD}\right|\) và \(\left|\overrightarrow{AC}\right|=\left|\overrightarrow{BD}\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AC}\right|=\left|BD\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AD}\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|\). Khẳng định nào sau đây sai?
\(\overrightarrow{AD}=\overrightarrow{BC}\) | |
\(ABCD\) là hình thoi | |
\(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BC}\right|\) | |
\(ABCD\) là hình thang cân |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}\) cùng hướng với \(\overrightarrow{CD}\) | |
\(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(ABCD\) là hình bình hành |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) mà trong đó không có ba điểm nào thẳng hàng. Điều kiện cần và đủ để \(\overrightarrow{AB}=\overrightarrow{CD}\) là
\(ABCD\) là hình bình hành | |
\(ABDC\) là hình bình hành | |
\(AC=BD\) | |
\(AB=CD\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;3)\) và \(B(5;4;7)\). Phương trình mặt cầu nhận \(AB\) làm đường kính là
\((x-6)^2+(y-2)^2+(z-10)^2=17\) | |
\((x-1)^2+(y+2)^2+(z-3)^2=17\) | |
\((x-3)^2+(y-1)^2+(z-5)^2=17\) | |
\((x-5)^2+(y-4)^2+(z-7)^2=17\) |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
Tứ giác \(ABCD\) là hình bình hành | |
\(G(9;7)\) là trọng tâm tam giác \(BCD\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
\(a\sqrt{3}\) | |
\(2a\) | |
\(a\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Cho hình vuông \(ABCD\) cạnh \(a\). Khi đó \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) bằng
\(a\sqrt{5}\) | |
\(\dfrac{a\sqrt{5}}{2}\) | |
\(2a\) | |
\(a\sqrt{3}\) |
Cho tam giác \(ABC\) đều, cạnh \(a\), có \(I,\,J,\,K\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Tính giá trị của $$\left|\overrightarrow{AI}+\overrightarrow{BJ}+\overrightarrow{CK}\right|.$$
\(3a\) | |
\(\dfrac{3a\sqrt{3}}{2}\) | |
\(0\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Gọi \(M\) là trung điểm của đoạn thẳng \(AB\). Khẳng định nào sau đây là sai?
\(\overrightarrow{AB}=2\overrightarrow{MB}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}=\vec{0}\) | |
\(\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{AB}\) | |
\(\overrightarrow{MA}=\overrightarrow{MB}\) |
Cho hình bình hành \(ABCD\), tâm \(M\). Mệnh đề nào sau đây sai?
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) | |
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) | |
\(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MC}+\overrightarrow{MD}\) |
Cho tam giác \(ABC\). Gọi \(M,\,N\) lần lượt là trung điểm của \(AB\) và \(AC\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=2\overrightarrow{AM}\) | |
\(\overrightarrow{AC}=2\overrightarrow{NC}\) | |
\(\overrightarrow{CB}=-2\overrightarrow{MN}\) | |
\(\overrightarrow{CN}=-\dfrac{1}{2}\overrightarrow{AC}\) |
Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=\overrightarrow{AC}\) | |
\(\overrightarrow{HC}=-\overrightarrow{HB}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) | |
\(\overrightarrow{BC}=2\overrightarrow{HC}\) |