Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:
![]() | \(a^2=b^2+c^2-2bc\cos A\) |
![]() | \(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\) |
![]() | \(S=\dfrac{1}{2}ab\cos C\) |
![]() | \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\) |
Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
![]() | \(7\) cm |
![]() | \(49\) cm |
![]() | \(11,4\) cm |
![]() | \(4,44\) cm |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
![]() | \(\dfrac{b^2+c^2-a^2}{2bc}\) |
![]() | \(\dfrac{a^2+c^2-b^2}{2ac}\) |
![]() | \(\dfrac{a^2+b^2-c^2}{2ab}\) |
![]() | \(\dfrac{c}{2R}\) |
Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng
![]() | \(-\dfrac{1}{6}\) |
![]() | \(\dfrac{1}{6}\) |
![]() | \(\dfrac{\sqrt{17}}{4}\) |
![]() | \(-\dfrac{4}{25}\) |
Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?
![]() | \(\cos B+\cos C=2\cos A\) |
![]() | \(\sin B+\sin C=2\sin A\) |
![]() | \(\sin B+\sin C=2\cos A\) |
![]() | \(\sin B+\cos C=2\sin A\) |
Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng
![]() | \(115^\circ\) |
![]() | \(75^\circ\) |
![]() | \(60^\circ\) |
![]() | \(53^\circ32'\) |
Tam giác \(ABC\) có \(a=8\), \(c=3\), \(\widehat{B}=60^\circ\). Độ dài cạnh \(b\) bằng bao nhiêu?
![]() | \(49\) |
![]() | \(\sqrt{97}\) |
![]() | \(7\) |
![]() | \(\sqrt{61}\) |
Tam giác \(ABC\) có ba cạnh \(a=5\), \(b=3\), \(c=5\). Số đo góc \(\widehat{BAC}\) là
![]() | \(\widehat{A}>60^\circ\) |
![]() | \(\widehat{A}=30^\circ\) |
![]() | \(\widehat{A}=45^\circ\) |
![]() | \(\widehat{A}=90^\circ\) |
Trong tam giác \(ABC\) có \(AB=2\)cm, \(AC=1\)cm, \(\widehat{A}=60^\circ\). Khi đó độ dài cạnh \(BC\) là
![]() | \(1\)cm |
![]() | \(2\)cm |
![]() | \(\sqrt{3}\)cm |
![]() | \(\sqrt{5}\)cm |
Cho tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(A\) có số đo bằng
![]() | \(30^\circ\) |
![]() | \(45^\circ\) |
![]() | \(68^\circ\) |
![]() | \(75^\circ\) |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
![]() | $a^2\dfrac{\sqrt{3}}{4}$ |
![]() | $a^2\dfrac{\sqrt{6}}{4}$ |
![]() | $a^2\dfrac{\sqrt{3}}{2}$ |
![]() | $a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
![]() | $S=16\text{ cm}^2$ |
![]() | $S=24\text{ cm}^2$ |
![]() | $S=48\text{ cm}^2$ |
![]() | $S=84\text{ cm}^2$ |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
![]() | \(6,01\) |
![]() | \(5,73\) |
![]() | \(5,85\) |
![]() | \(4,57\) |
Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là
![]() | \(S=\dfrac{a\cdot b\cdot c}{2R}\) |
![]() | \(S=p\cdot R\) |
![]() | \(S=\dfrac{1}{2}a\cdot b\cdot\cos C\) |
![]() | \(S=\dfrac{1}{2}a\cdot c\cdot\sin B\) |
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A(1;0;0)\), \(B(0;0;1)\), \(C(2;1;1)\). Độ dài đường cao kẻ từ \(A\) của \(\triangle ABC\) bằng
![]() | \(\dfrac{\sqrt{30}}{5}\) |
![]() | \(\dfrac{\sqrt{15}}{5}\) |
![]() | \(2\sqrt{5}\) |
![]() | \(3\sqrt{6}\) |
Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?
![]() | \(S=\dfrac{abc}{2R}\) |
![]() | \(S=\dfrac{1}{2}ac\sin B\) |
![]() | \(S=\dfrac{a+b+c}{2}r\) |
![]() | \(S=\sqrt{p(p-a)(p-b)(p-c)}\) |
Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là
![]() | \(\dfrac{\sqrt{3}}{2}\) |
![]() | \(\dfrac{3}{8}\) |
![]() | \(\dfrac{4}{5}\) |
![]() | \(\dfrac{8}{9}\) |
Cho tam giác \(ABC\) có \(AB=3\), \(AC=4\) và \(\tan A=2\sqrt{2}\). Tính cạnh \(BC\).
![]() | \(\sqrt{13}\) |
![]() | \(3\sqrt{2}\) |
![]() | \(4\sqrt{2}\) |
![]() | \(\sqrt{17}\) |
Cho tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(AC=10\), \(AB=6\). Tính cạnh \(BC\).
![]() | \(76\) |
![]() | \(2\sqrt{19}\) |
![]() | \(14\) |
![]() | \(6\sqrt{2}\) |
Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó
![]() | \(\widehat{A}=75^\circ\) |
![]() | \(\widehat{A}=60^\circ\) |
![]() | \(\widehat{A}=45^\circ\) |
![]() | \(\widehat{A}=30^\circ\) |