Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
Tứ giác \(ABCD\) là hình bình hành | |
\(G(9;7)\) là trọng tâm tam giác \(BCD\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào sau đây đúng?
\(\overrightarrow{AB}=\overrightarrow{AC}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương |
Gọi \(C\) là trung điểm của đoạn thẳng \(AB\). Hãy chọn khẳng định đúng trong các khẳng định sau:
\(\overrightarrow{CA}=\overrightarrow{CB}\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CB}\) ngược hướng | |
\(\left|\overrightarrow{AC}\right|=\overrightarrow{CB}\) |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AC}\right|=\left|BD\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho hình vuông \(ABCD\). Khẳng định nào sau đây đúng?
\(\overrightarrow{AC}=\overrightarrow{BD}\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}\) cùng hướng với \(\overrightarrow{CD}\) | |
\(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(ABCD\) là hình bình hành |
Chọn mệnh đề đúng trong các mệnh đề sau?
Hai vectơ có giá song song thì cùng phương | |
Hai vectơ không cùng phương thì ngược hướng | |
Hai vectơ không cùng phương thì cắt nhau | |
Hai vectơ có cùng độ dài thì bằng nhau |
Mệnh đề nào dưới đây đúng?
Hai vectơ (khác \(\vec{0}\)) bằng nhau thì không bao giờ cùng phương | |
Hai vectơ bằng nhau thì chúng phải có điểm đầu và điểm cuối trùng nhau | |
Hai vectơ (khác \(\vec{0}\)) cùng phương thì song song | |
Hai vectơ bằng nhau thì cùng hướng |
Khẳng định nào sau đây đúng?
Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương | |
Hai vectơ cùng phương với một vectơ thứ ba khác \(\vec{0}\) thì cùng phương | |
Hai vectơ ngược hướng với một vectơ thứ ba thì ngược hướng | |
Hai vectơ bằng nhau khi và chỉ khi chúng có độ dài bằng nhau |
Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.
$m=7$; $n=\dfrac{3}{4}$ | |
$m=1$; $n=0$ | |
$m=4$; $n=-3$ | |
$m=7$; $n=-\dfrac{3}{4}$ |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
$m=\sqrt{6}$ | |
$m=-6$ | |
Không có giá trị nào của $m$ | |
$m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{3}{2}$ | |
$m=\dfrac{3}{2}$ |
Cho vectơ \(\overrightarrow{a}=\left(1;3;4\right)\), tìm vectơ \(\overrightarrow{b}\) cùng phương với vectơ \(\overrightarrow{a}\).
\(\overrightarrow{b}=\left(-2;6;8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;-8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;8\right)\) | |
\(\overrightarrow{b}=\left(2;-6;-8\right)\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho \(A(1;-1;0)\), \(B(0;2;0)\) và \(C(2;1;3)\). Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) là
\(M(3;2;-3)\) | |
\(M(3;-2;3)\) | |
\(M(3;-2;-3)\) | |
\(M(3;2;3)\) |
Cặp vectơ nào sau đây cùng phương?
\(\vec{u}=(1;-2)\) và \(\vec{v}=(2;4)\) | |
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;4)\) | |
\(\vec{u}=(1;0)\) và \(\vec{v}=(0;1)\) | |
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;-4)\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;5)\), \(B(5;5)\), \(C(-1;11)\). Khẳng định nào sau đây đúng?
\(A,\,B,\,C\) thẳng hàng | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) không cùng phương | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(3;-2)\), \(B(7;1)\), \(C(0;1)\), \(D(-8;-5)\). Khẳng định nào sau đây đúng?
\(\overrightarrow{AB},\,\overrightarrow{CD}\) đối nhau | |
\(\overrightarrow{AB},\,\overrightarrow{CD}\) ngược hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng | |
\(A,\,B,\,C,\,D\) thẳng hàng |