Ngân hàng bài tập

Bài tập tương tự

B

Cho tam giác \(ABC\). Gọi \(M,\,N\) lần lượt là trung điểm của \(AB\) và \(AC\). Khẳng định nào sau đây sai?

\(\overrightarrow{AB}=2\overrightarrow{AM}\)
\(\overrightarrow{AC}=2\overrightarrow{NC}\)
\(\overrightarrow{CB}=-2\overrightarrow{MN}\)
\(\overrightarrow{CN}=-\dfrac{1}{2}\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?

\(\overrightarrow{AB}=\overrightarrow{AC}\)
\(\overrightarrow{HC}=-\overrightarrow{HB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\)
\(\overrightarrow{BC}=2\overrightarrow{HC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào sau đây đúng?

\(\overrightarrow{AB}=\overrightarrow{AC}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\)
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) với \(M,\,N,\,P\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Số vectơ bằng với \(\overrightarrow{MN}\) là

\(1\)
\(2\)
\(3\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $B(3;0)$ và $C(-3;4)$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$, $AC$. Tìm tọa độ véc-tơ $\overrightarrow{MN}$.

$\overrightarrow{MN}=(-3;2)$
$\overrightarrow{MN}=(3;-2)$
$\overrightarrow{MN}=(-6;4)$
$\overrightarrow{MN}=(1;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\)
\(\overrightarrow{u}=\overrightarrow{v}\)
\(\overrightarrow{u}\bot\overrightarrow{v}\)
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?

Tứ giác \(ABCD\) là hình bình hành
\(G(9;7)\) là trọng tâm tam giác \(BCD\)
\(\overrightarrow{AB}=\overrightarrow{CD}\)
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\). Có bao nhiêu điểm \(M\) thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\)?

\(1\)
\(2\)
\(0\)
Vô số
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng

\(a\sqrt{3}\)
\(2a\)
\(a\)
\(\dfrac{a\sqrt{3}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) đều, cạnh \(a\), có \(I,\,J,\,K\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Tính giá trị của $$\left|\overrightarrow{AI}+\overrightarrow{BJ}+\overrightarrow{CK}\right|.$$

\(3a\)
\(\dfrac{3a\sqrt{3}}{2}\)
\(0\)
\(\dfrac{a\sqrt{3}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(OAB\) vuông cân tại \(O\), cạnh \(OA=a\). Tính \(\left|2\overrightarrow{OA}-\overrightarrow{OB}\right|\).

\(a\)
\(\left(1+\sqrt{2}\right)a\)
\(a\sqrt{5}\)
\(2a\sqrt{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) vuông cân tại \(C\) với \(AB=\sqrt{2}\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{5}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{5}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) vuông cân tại \(A\) với \(AB=a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{a\sqrt{2}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB=3\), \(AC=4\). Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\).

\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\sqrt{13}\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=5\)
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=\sqrt{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình vuông \(ABCD\) cạnh \(a\), tâm \(O\). Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\).

\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a}{2}\)
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a\sqrt{2}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(M\) là điểm thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\). Mệnh đề nào sau đây sai?

\(MABC\) là hình bình hành
\(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\)
\(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\)
\(\overrightarrow{MA}=\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) đều cạnh \(a\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\)
\(\overrightarrow{CA}=-\overrightarrow{AB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\)
\(\overrightarrow{CA}=-\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) thỏa mãn \(\left|\vec{a}+\vec{b}\right|=0\). Chọn phát biểu không đúng?

\(\vec{a},\,\vec{b}\) ngược hướng
\(\left|\vec{a}\right|=\left|\vec{b}\right|\)
\(\vec{a},\,\vec{b}\) đối nhau
\(\vec{a},\,\vec{b}\) bằng nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự