Cho \(\overrightarrow{AB}=-\overrightarrow{CD}\). Khẳng định nào sau đây đúng?
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng độ dài | |
\(ABCD\) là hình bình hành | |
\(\overrightarrow{AB}+\overrightarrow{DC}=\vec{0}\) |
Cho hình bình hành \(ABCD\), tâm \(O\). Đẳng thức nào sau đây sai?
\(\overrightarrow{BA}=\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(\overrightarrow{OA}=\overrightarrow{OC}\) | |
\(\overrightarrow{AO}=\overrightarrow{OC}\) |
Cho tứ giác \(ABCD\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\). Khẳng định nào sau đây sai?
\(\overrightarrow{MN}=\overrightarrow{QP}\) | |
\(\left|\overrightarrow{QP}\right|=\left|\overrightarrow{MN}\right|\) | |
\(\overrightarrow{MQ}=\overrightarrow{NP}\) | |
\(\left|\overrightarrow{MN}\right|=\left|\overrightarrow{AC}\right|\) |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}\) cùng hướng với \(\overrightarrow{CD}\) | |
\(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(ABCD\) là hình bình hành |
Cho hình bình hành $ABCD$. Phép tịnh tiến theo vectơ nào sau đây biến đường thẳng $AB$ thành đường thẳng $CD$ và biến đường thẳng $AD$ thành đường thẳng $BC$?
$\overrightarrow{AC}$ | |
$\overrightarrow{CA}$ | |
$\overrightarrow{BD}$ | |
$\overrightarrow{DB}$ |
Trong không gian $Oxyz$, độ dài của vectơ $\overrightarrow{u}=(1;-2;2)$ là
$3$ | |
$5$ | |
$1$ | |
$9$ |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
$3$ | |
$6$ | |
$2$ | |
$3\sqrt{3}$ |
Trong không gian, cho hình bình hành $ABCD$. Vectơ $\overrightarrow{AB}+\overrightarrow{AD}$ bằng
$\overrightarrow{AC}$ | |
$\overrightarrow{BC}$ | |
$\overrightarrow{BD}$ | |
$\overrightarrow{CA}$ |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.
\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\) | |
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\) | |
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\) | |
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\) |
Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(M(3;0;0)\), \(N(0;0;4)\). Tính độ dài đoạn thẳng \(MN\).
\(MN=7\) | |
\(MN=1\) | |
\(MN=5\) | |
\(MN=10\) |
Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\) | |
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;3)\) và \(B(5;4;7)\). Phương trình mặt cầu nhận \(AB\) làm đường kính là
\((x-6)^2+(y-2)^2+(z-10)^2=17\) | |
\((x-1)^2+(y+2)^2+(z-3)^2=17\) | |
\((x-3)^2+(y-1)^2+(z-5)^2=17\) | |
\((x-5)^2+(y-4)^2+(z-7)^2=17\) |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
Tứ giác \(ABCD\) là hình bình hành | |
\(G(9;7)\) là trọng tâm tam giác \(BCD\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u},\,\vec{v}\neq\vec{0}\). Phát biểu nào sau đây là sai?
\(\left|\left[\vec{u},\vec{v}\right]\right|=\left|\vec{u}\right|\cdot\left|\vec{v}\right|\cdot\cos\left(\vec{u},\vec{v}\right)\) | |
\(\left[\vec{u},\vec{v}\right]\) vuông góc với \(\vec{u}\) và \(\vec{v}\) | |
\(\left[\vec{u},\vec{v}\right]=\vec{0}\Leftrightarrow\vec{u},\,\vec{v}\) cùng phương | |
\(\left[\vec{u},\vec{v}\right]\) là một vectơ |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Khẳng định nào sau đây sai?
\(\left|\left[\vec{a},\vec{b}\right]\right|=\left|\vec{a}\right|\cdot\left|\vec{b}\right|\cdot\sin\left(\vec{a},\vec{b}\right)\) | |
\(\left[\vec{a},3\vec{b}\right]=3\left[\vec{a},\vec{b}\right]\) | |
\(\left[2\vec{a},\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\) | |
\(\left[2\vec{a},2\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\) |
Cho tam giác \(ABC\). Có bao nhiêu điểm \(M\) thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\)?
\(1\) | |
\(2\) | |
\(0\) | |
Vô số |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
\(a\sqrt{3}\) | |
\(2a\) | |
\(a\) | |
\(\dfrac{a\sqrt{3}}{2}\) |