Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\), \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BD}\right|\) và \(\left|\overrightarrow{AC}\right|=\left|\overrightarrow{BD}\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AC}\right|=\left|BD\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AD}\right|\). \(ABCD\) là hình gì?
Hình thoi | |
Hình chữ nhật | |
Hình bình hành | |
Hình vuông |
Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.
$m=7$; $n=\dfrac{3}{4}$ | |
$m=1$; $n=0$ | |
$m=4$; $n=-3$ | |
$m=7$; $n=-\dfrac{3}{4}$ |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
$m=\sqrt{6}$ | |
$m=-6$ | |
Không có giá trị nào của $m$ | |
$m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{3}{2}$ | |
$m=\dfrac{3}{2}$ |
Cho vectơ \(\overrightarrow{a}=\left(1;3;4\right)\), tìm vectơ \(\overrightarrow{b}\) cùng phương với vectơ \(\overrightarrow{a}\).
\(\overrightarrow{b}=\left(-2;6;8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;-8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;8\right)\) | |
\(\overrightarrow{b}=\left(2;-6;-8\right)\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Cặp vectơ nào sau đây cùng phương?
\(\vec{u}=(1;-2)\) và \(\vec{v}=(2;4)\) | |
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;4)\) | |
\(\vec{u}=(1;0)\) và \(\vec{v}=(0;1)\) | |
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;-4)\) |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
Tứ giác \(ABCD\) là hình bình hành | |
\(G(9;7)\) là trọng tâm tam giác \(BCD\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;5)\), \(B(5;5)\), \(C(-1;11)\). Khẳng định nào sau đây đúng?
\(A,\,B,\,C\) thẳng hàng | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) không cùng phương | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(3;-2)\), \(B(7;1)\), \(C(0;1)\), \(D(-8;-5)\). Khẳng định nào sau đây đúng?
\(\overrightarrow{AB},\,\overrightarrow{CD}\) đối nhau | |
\(\overrightarrow{AB},\,\overrightarrow{CD}\) ngược hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng | |
\(A,\,B,\,C,\,D\) thẳng hàng |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.
\(m=-1\) | |
\(m=-\dfrac{1}{2}\) | |
\(m=\dfrac{1}{4}\) | |
\(m=2\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
\(m=-5\) | |
\(m=4\) | |
\(m=0\) | |
\(m=-1\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?
\(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng | |
\(\vec{u},\,\vec{v}\) cùng phương | |
\(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng | |
\(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương |
Khẳng định nào sau đây là đúng?
\(\vec{a}=(-5;0),\,\vec{b}=(-4;0)\) cùng hướng | |
\(\vec{c}=(7;3)\) là vectơ đối của \(\vec{d}=(-7;3)\) | |
\(\vec{u}=(4;2),\,\vec{v}=(8;3)\) cùng phương | |
\(\vec{m}=(6;3),\,\vec{n}=(2;1)\) ngược hướng |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;2;-1)\), \(\vec{b}=(3;-1;0)\), \(\vec{c}=(1;-5;2)\). Khẳng định nào sau đây là đúng?
\(\vec{a},\,\vec{b}\) cùng phương | |
\(\vec{a},\,\vec{b},\,\vec{c}\) không đồng phẳng | |
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?
\(\vec{a},\,\vec{c}\) cùng phương | |
\(\vec{b},\,\vec{c}\) cùng phương | |
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\) | |
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng |