Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\), \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BD}\right|\) và \(\left|\overrightarrow{AC}\right|=\left|\overrightarrow{BD}\right|\). \(ABCD\) là hình gì?
![]() | Hình thoi |
![]() | Hình chữ nhật |
![]() | Hình bình hành |
![]() | Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AC}\right|=\left|BD\right|\). \(ABCD\) là hình gì?
![]() | Hình thoi |
![]() | Hình chữ nhật |
![]() | Hình bình hành |
![]() | Hình vuông |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{AD}=\overrightarrow{BC}\) |
![]() | \(ABCD\) là hình thoi |
![]() | \(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BC}\right|\) |
![]() | \(ABCD\) là hình thang cân |
Cho hình thoi \(ABCD\) cạnh \(a\) và góc \(\widehat{BAD}=60^\circ\). Đẳng thức nào sau đây đúng?
![]() | \(\overrightarrow{AB}=\overrightarrow{AD}\) |
![]() | \(\left|\overrightarrow{BD}\right|=a\) |
![]() | \(\overrightarrow{BD}=\overrightarrow{AC}\) |
![]() | \(\overrightarrow{BC}=\overrightarrow{DA}\) |
Cho tứ giác \(ABCD\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{MN}=\overrightarrow{QP}\) |
![]() | \(\left|\overrightarrow{QP}\right|=\left|\overrightarrow{MN}\right|\) |
![]() | \(\overrightarrow{MQ}=\overrightarrow{NP}\) |
![]() | \(\left|\overrightarrow{MN}\right|=\left|\overrightarrow{AC}\right|\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
![]() | \(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) |
![]() | \(\overrightarrow{u}=\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\bot\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Cho hình thoi \(ABCD\) có \(AC=2a\) và \(BD=a\). Tính \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|\).
![]() | \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=3a\) |
![]() | \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{3}\) |
![]() | \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{5}\) |
![]() | \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=5a\) |
Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{AB}=\overrightarrow{AC}\) |
![]() | \(\overrightarrow{HC}=-\overrightarrow{HB}\) |
![]() | \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) |
![]() | \(\overrightarrow{BC}=2\overrightarrow{HC}\) |
Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{\sqrt{3}}{2}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) |
Cho hình vuông \(ABCD\) cạnh \(a\), tâm \(O\). Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\).
![]() | \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\) |
![]() | \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\sqrt{2}\) |
![]() | \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a}{2}\) |
![]() | \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a\sqrt{2}}{2}\) |
Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) thỏa mãn \(\left|\vec{a}+\vec{b}\right|=0\). Chọn phát biểu không đúng?
![]() | \(\vec{a},\,\vec{b}\) ngược hướng |
![]() | \(\left|\vec{a}\right|=\left|\vec{b}\right|\) |
![]() | \(\vec{a},\,\vec{b}\) đối nhau |
![]() | \(\vec{a},\,\vec{b}\) bằng nhau |
Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào sau đây đúng?
![]() | \(\overrightarrow{AB}=\overrightarrow{AC}\) |
![]() | \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) |
![]() | \(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng |
![]() | \(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương |
Gọi \(C\) là trung điểm của đoạn thẳng \(AB\). Hãy chọn khẳng định đúng trong các khẳng định sau:
![]() | \(\overrightarrow{CA}=\overrightarrow{CB}\) |
![]() | \(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng |
![]() | \(\overrightarrow{AB},\,\overrightarrow{CB}\) ngược hướng |
![]() | \(\left|\overrightarrow{AC}\right|=\overrightarrow{CB}\) |
Cho hình bình hành \(ABCD\), tâm \(O\). Đẳng thức nào sau đây sai?
![]() | \(\overrightarrow{BA}=\overrightarrow{CD}\) |
![]() | \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) |
![]() | \(\overrightarrow{OA}=\overrightarrow{OC}\) |
![]() | \(\overrightarrow{AO}=\overrightarrow{OC}\) |
Cho tứ giác \(ABCD\) có \(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng phương. \(ABCD\) là hình gì?
![]() | Hình thoi |
![]() | Hình thang |
![]() | Hình bình hành |
![]() | Hình vuông |
Cho lục giác đều \(ABCDEF\) tâm \(O\). Đẳng thức nào sau đây sai?
![]() | \(\overrightarrow{AB}=\overrightarrow{ED}\) |
![]() | \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AF}\right|\) |
![]() | \(\overrightarrow{OD}=\overrightarrow{BC}\) |
![]() | \(\overrightarrow{OB}=\overrightarrow{OE}\) |
Gọi \(M,\,N\) lần lượt là trung điểm các cạnh \(AB,\,AC\) của tam giác \(ABC\). Đẳng thức nào sau đây đúng?
![]() | \(\overrightarrow{MA}=\overrightarrow{MB}\) |
![]() | \(\overrightarrow{AB}=\overrightarrow{AC}\) |
![]() | \(\overrightarrow{MN}=\overrightarrow{BC}\) |
![]() | \(\left|\overrightarrow{BC}\right|=2\left|\overrightarrow{MN}\right|\) |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{AB}\) cùng hướng với \(\overrightarrow{CD}\) |
![]() | \(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{CD}\) |
![]() | \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) |
![]() | \(ABCD\) là hình bình hành |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) mà trong đó không có ba điểm nào thẳng hàng. Điều kiện cần và đủ để \(\overrightarrow{AB}=\overrightarrow{CD}\) là
![]() | \(ABCD\) là hình bình hành |
![]() | \(ABDC\) là hình bình hành |
![]() | \(AC=BD\) |
![]() | \(AB=CD\) |
Trong không gian $Oxyz$, độ dài của vectơ $\overrightarrow{u}=(1;-2;2)$ là
![]() | $3$ |
![]() | $5$ |
![]() | $1$ |
![]() | $9$ |