Ngân hàng bài tập

Bài tập tương tự

C

Cho \(\vec{a}\) và \(\vec{b}\) (khác \(\vec{0}\)) là các vectơ đối nhau. Khẳng định nào sau đây sai?

\(\vec{a},\,\vec{b}\) cùng phương
\(\vec{a},\,\vec{b}\) ngược hướng
\(\vec{a},\,\vec{b}\) cùng độ dài
\(\vec{a},\,\vec{b}\) cùng hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng

$3$
$6$
$2$
$3\sqrt{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\)
\(\overrightarrow{u}=\overrightarrow{v}\)
\(\overrightarrow{u}\bot\overrightarrow{v}\)
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.

\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\)
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\)
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\)
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(3;-2)\), \(B(7;1)\), \(C(0;1)\), \(D(-8;-5)\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB},\,\overrightarrow{CD}\) đối nhau
\(\overrightarrow{AB},\,\overrightarrow{CD}\) ngược hướng
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng
\(A,\,B,\,C,\,D\) thẳng hàng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Khẳng định nào sau đây là đúng?

\(\vec{a}=(-5;0),\,\vec{b}=(-4;0)\) cùng hướng
\(\vec{c}=(7;3)\) là vectơ đối của \(\vec{d}=(-7;3)\)
\(\vec{u}=(4;2),\,\vec{v}=(8;3)\) cùng phương
\(\vec{m}=(6;3),\,\vec{n}=(2;1)\) ngược hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?

\(\vec{a},\,\vec{c}\) cùng phương
\(\vec{b},\,\vec{c}\) cùng phương
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u},\,\vec{v}\neq\vec{0}\). Phát biểu nào sau đây là sai?

\(\left|\left[\vec{u},\vec{v}\right]\right|=\left|\vec{u}\right|\cdot\left|\vec{v}\right|\cdot\cos\left(\vec{u},\vec{v}\right)\)
\(\left[\vec{u},\vec{v}\right]\) vuông góc với \(\vec{u}\) và \(\vec{v}\)
\(\left[\vec{u},\vec{v}\right]=\vec{0}\Leftrightarrow\vec{u},\,\vec{v}\) cùng phương
\(\left[\vec{u},\vec{v}\right]\) là một vectơ
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Khẳng định nào sau đây sai?

\(\left|\left[\vec{a},\vec{b}\right]\right|=\left|\vec{a}\right|\cdot\left|\vec{b}\right|\cdot\sin\left(\vec{a},\vec{b}\right)\)
\(\left[\vec{a},3\vec{b}\right]=3\left[\vec{a},\vec{b}\right]\)
\(\left[2\vec{a},\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\)
\(\left[2\vec{a},2\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?

\(\overrightarrow{AB}=\overrightarrow{AC}\)
\(\overrightarrow{HC}=-\overrightarrow{HB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\)
\(\overrightarrow{BC}=2\overrightarrow{HC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Vectơ đối của vectơ \(5\overrightarrow{u}\) là

\(\overrightarrow{u}-5\)
\(-\overrightarrow{u}\)
\(5-\overrightarrow{u}\)
\(-5\overrightarrow{u}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA}\), \(\overrightarrow{F_2}=\overrightarrow{MB}\) và \(\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm \(M\) và vật đứng yên. Biết rằng \(\overrightarrow{F_1},\,\overrightarrow{F_2}\) đều có cường độ lực là \(60\)N, và chúng vuông góc với nhau. Tính cường độ lực \(\overrightarrow{F_3}\).

\(84,58\)N
\(84,86\)N
\(84,85\)N
\(120\)N
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|\).

\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=0\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=2a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho ba điểm phân biệt \(A,\,B,\,C\). Mệnh đề nào sau đây đúng?

\(AB+BC=AC\)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\vec{0}\)
\(\overrightarrow{AB}=\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) đều cạnh \(a\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\)
\(\overrightarrow{CA}=-\overrightarrow{AB}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\)
\(\overrightarrow{CA}=-\overrightarrow{BC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) thỏa mãn \(\left|\vec{a}+\vec{b}\right|=0\). Chọn phát biểu không đúng?

\(\vec{a},\,\vec{b}\) ngược hướng
\(\left|\vec{a}\right|=\left|\vec{b}\right|\)
\(\vec{a},\,\vec{b}\) đối nhau
\(\vec{a},\,\vec{b}\) bằng nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai điểm \(A,\,B\) phân biệt. Điều kiện để \(M\) là trung điểm đoạn \(AB\) là

\(MA=MB\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\vec{0}\)
\(\overrightarrow{MA}-\overrightarrow{MB}=\vec{0}\)
\(\overrightarrow{MA}=\overrightarrow{MB}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai điểm \(A,\,B\) phân biệt. Điều kiện để \(I\) là trung điểm đoạn \(AB\) là

\(IA=IB\)
\(\overrightarrow{IA}=\overrightarrow{IB}\)
\(\overrightarrow{IA}=-\overrightarrow{IB}\)
\(\overrightarrow{IA}=\overrightarrow{BI}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\overrightarrow{AB}=-\overrightarrow{CD}\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng độ dài
\(ABCD\) là hình bình hành
\(\overrightarrow{AB}+\overrightarrow{DC}=\vec{0}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào sau đây đúng?

\(\overrightarrow{AB}=\overrightarrow{AC}\)
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\)
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự