Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|\).
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=0\) | |
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\) | |
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=a\sqrt{2}\) | |
\(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=2a\) |
Chọn phương án C.
Ta có \(\overrightarrow{AB}-\overrightarrow{DA}=\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\).
Suy ra \(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=AC=a\sqrt{2}\).