Gọi \((H)\) là hình phẳng giới hạn bởi các đường \(y=4^x\), \(y=0\), \(x=1\) và \(x=3\). Thể tích \(V\) của khối tròn xoay tạo thành khi quay \((H)\) quanh trục \(Ox\) được xác định bởi công thức
\(V=\pi\displaystyle\int\limits_{1}^{3}4^{2x}\mathrm{\,d}x\) | |
\(V=\displaystyle\int\limits_{1}^{3}4^{x+1}\mathrm{\,d}x\) | |
\(V=\pi\displaystyle\int\limits_{1}^{3}4^{2x+1}\mathrm{\,d}x\) | |
\(V=\displaystyle\int\limits_{1}^{3}16^x\mathrm{\,d}x\) |
Chọn phương án A.
\(V=\pi\displaystyle\int\limits_{1}^{3}\left(4^x\right)^2\mathrm{\,d}x=\pi\displaystyle\int\limits_{1}^{3}16^x\mathrm{\,d}x=\pi\displaystyle\int\limits_{1}^{3}4^{2x}\mathrm{\,d}x\).