Cho tích phân \(\displaystyle\int\limits_0^{\tfrac{\pi}{2}} \left(4x-1+\cos x\right)\mathrm{\,d}x=\pi\left(\dfrac{\pi}{a}-\dfrac{1}{b}\right)+c\), \((a,b,c\in\mathbb{Q})\). Tính \(a-b+c\).
\(\dfrac{1}{2}\) | |
\(1\) | |
\(-2\) | |
\(\dfrac{1}{3}\) |
Chọn phương án B.
\(\begin{align*}\displaystyle \int\limits_0^{\tfrac{\pi}{2}} \left(4x-1+\cos x\right)\mathrm{\,d}x&=\left(2x^2-x+\sin x\right)\Big|_0^{\tfrac{\pi}{2}}\\ &=\pi\left(\dfrac{\pi}{2}-\dfrac{1}{2}\right)+1.\end{align*}\)
Theo đó: \(a=2\), \(b=2\), \(c=1\).
Suy ra \(a-b+c=1\).