Tìm các giá trị của \(b\) sao cho \(\displaystyle\int\limits_0^b(2x-4)\mathrm{\,d}x=5\).
\(\{-1;4\}\) | |
\(\{5\}\) | |
\(\{-1\}\) | |
\(\{-1;5\}\) |
Chọn phương án D.
\(\begin{align*}&\,\displaystyle\int\limits_0^b(2x-4)\mathrm{\,d}x&=5\\
\Leftrightarrow&\,\left(x^2-4x\right)\bigg|^b_0&=5\\
\Leftrightarrow&\,b^2-4b-5&=0\\
\Leftrightarrow&\,\left[\begin{array}{l}b=-1\\ b=5.\end{array}\right.\end{align*}\)