Nếu \(\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=-2\) và \(\displaystyle\int\limits_2^3f(x)\mathrm{\,d}x=1\) thì \(\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x\) bằng
\(-3\) | |
\(-1\) | |
\(1\) | |
\(3\) |
Chọn phương án B.
\(\begin{aligned}
\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x&=\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x+\displaystyle\int\limits_2^3f(x)\mathrm{\,d}x\\
&=-2+1=-1.
\end{aligned}\)