Giá trị tích phân \(\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x\) bằng
\(\ln\dfrac{5}{3}\) | |
\(1+\ln\dfrac{4}{3}\) | |
\(\ln\dfrac{3}{5}\) | |
\(1-\ln\dfrac{3}{5}\) |
Chọn phương án B.
Dùng máy tính cầm tay ta có \(\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x\approx1,2876\ldots\)
Và \(1+\ln\dfrac{4}{3}\approx1,2876\ldots\)
Chọn phương án B.
\(\begin{align*}\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x&=\displaystyle\int\limits_0^1\left(1+\dfrac{1}{x+3}\right)\mathrm{\,d}x\\
&=\left(x+\ln|x+3|\right)\bigg|_0^1\\
&=1+\ln4-\ln3=1+\ln\dfrac{4}{3}.\end{align*}\)