Biết \(\displaystyle\int\limits_{\tfrac{1}{3}}^1\dfrac{x-5}{2x+2}\mathrm{\,d}x=a+\ln b\) với \(a,\,b\in\mathbb{R}\). Mệnh đề nào dưới đây đúng?
![]() | \(ab=\dfrac{8}{81}\) |
![]() | \(a+b=\dfrac{7}{24}\) |
![]() | \(ab=\dfrac{9}{8}\) |
![]() | \(a+b=\dfrac{3}{10}\) |
Chọn phương án A.
\(\begin{align*}\displaystyle\int\limits_{\tfrac{1}{3}}^1\dfrac{x-5}{2x+2}\mathrm{\,d}x&=\dfrac{1}{2}\displaystyle\int\limits_{\tfrac{1}{3}}^1\dfrac{x-5}{x+1}\mathrm{\,d}x\\
&=\dfrac{1}{2}\displaystyle\int\limits_{\tfrac{1}{3}}^1\left(1-\dfrac{6}{x+1}\right)\mathrm{\,d}x\\
&=\dfrac{1}{2}\left(x-6\ln|x+1|\right)\bigg|_{\tfrac{1}{3}}^1\\
&=\dfrac{1}{3}-3\left(\ln2-\ln\dfrac{4}{3}\right)\\
&=\dfrac{1}{3}+3\ln\dfrac{2}{3}\\
&=\dfrac{1}{3}+\ln\dfrac{8}{27}.\end{align*}\)
Theo đó \(a=\dfrac{1}{3}\), \(b=\dfrac{8}{27}\)
\(\Rightarrow ab=\dfrac{1}{3}\cdot\dfrac{8}{27}=\dfrac{8}{81}\).