Tính tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2-9}\).
\(I=\dfrac{1}{6}\ln\dfrac{1}{2}\) | |
\(I=-\dfrac{1}{6}\ln\dfrac{1}{2}\) | |
\(I=\dfrac{1}{6}\ln2\) | |
\(I=\ln\sqrt[6]{2}\) |
Chọn phương án A.
Dùng máy tính cầm tay:
Chọn phương án A.
\(\begin{align*}
I&=\displaystyle\int\limits_0^1 \dfrac{\mathrm{\,d}x}{x^2-9}=\displaystyle\int\limits_0^1 \dfrac{\mathrm{\,d}x}{(x-3)(x+3)}\\
&=\dfrac{1}{6}\displaystyle\int\limits_0^1 \left(\dfrac{1}{x-3}-\dfrac{1}{x+3}\right)\mathrm{\,d}x\\
&=\dfrac{1}{6}\left(\ln|x-3|-\ln|x+3|\right)\bigg|_0^1\\
&=\dfrac{1}{6}\left(\ln\dfrac{2}{3}-\ln \dfrac{4}{3}\right)=\dfrac{1}{6}\ln\dfrac{1}{2}.
\end{align*}\)