Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
![]() | \(S=3\) |
![]() | \(S=6\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Chọn phương án B.
\(\begin{aligned}
\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}&=\displaystyle\int\limits_{3}^{5}\dfrac{1}{x(x-1)}\mathrm{\,d}x\\
&=\displaystyle\int\limits_{3}^{5}\dfrac{x-(x-1)}{x(x-1)}\mathrm{\,d}x\\
&=\displaystyle\int\limits_{3}^{5}\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\mathrm{\,d}x\\
&=\left(\ln|x-1|-\ln|x|\right)\bigg|_3^5\\
&=-\ln5+\ln3+\ln2.
\end{aligned}\)
Theo đó, \(a=-1\), \(b=1\), \(c=1\).
Suy ra \(S=-2\cdot(-1)+1+3\cdot1^2=6\).