Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\), biết \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f\left(\tan x\right)\mathrm{\,d}x=4\) và \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2\cdot f(x)}{x^2+1}\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\).
\(6\) | |
\(1\) | |
\(0\) | |
\(2\) |
Chọn phương án A.
Đặt \(u=\tan x\) ta có
Khi đó $$\begin{eqnarray*}
&\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f\left(\tan x\right)\mathrm{\,d}x&=4\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}\dfrac{f(u)}{1+u^2}\mathrm{\,d}u&=4\\
\text{hay }&\displaystyle\int\limits_{0}^{1}\dfrac{f(x)}{1+x^2}\mathrm{\,d}x&=4.
\end{eqnarray*}$$
Ta lại có $$\begin{eqnarray*}
&\displaystyle\int\limits_{0}^{1}\dfrac{x^2\cdot f(x)}{x^2+1}\mathrm{\,d}x&=2\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}\dfrac{\left(x^2+1\right)-1}{x^2+1}\cdot f(x)\mathrm{\,d}x&=2\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}\left(1-\dfrac{1}{x^2+1}\right)\cdot f(x)\mathrm{\,d}x&=2\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x-\displaystyle\int\limits_{0}^{1}\dfrac{f(x)}{x^2+1}\mathrm{\,d}x&=2\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x-4&=2\\
\Leftrightarrow&\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x&=6.
\end{eqnarray*}$$