Ngân hàng bài tập
C

Giả sử hàm số \(f\) liên tục trên khoảng \(\mathbb{K}\) và \(a,\,b,\,c\) là \(3\) số thực bất kỳ thuộc \(\mathbb{K}\). Khẳng định nào sau đây sai?

\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\neq\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=-\displaystyle\int\limits_{b}^{a}f(t)\mathrm{\,d}t\)
\(\displaystyle\int\limits_{a}^{a}f(x)\mathrm{\,d}x=0\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\;\left(c\in(a;b)\right)\)
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
21:19 28/04/2020

Chọn phương án A.

Ta có \(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t=-\displaystyle\int\limits_{b}^{a}f(t)\mathrm{\,d}t\).