Biết \(\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x=2\) và \(\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x=3\). Kết quả \(\displaystyle\int\limits_{3}^{2}f(x)\mathrm{\,d}x\) bằng bao nhiêu?
\(3\) | |
\(\dfrac{5}{2}\) | |
\(-1\) | |
\(1\) |
Chọn phương án C.
\(\begin{eqnarray*}
&\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x&=\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x\\
\Leftrightarrow&2+\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x&=3\\
\Leftrightarrow&\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x&=1\\
\Leftrightarrow&\displaystyle\int\limits_{3}^{2}f(x)\mathrm{\,d}x&=-1.
\end{eqnarray*}\)