Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng
![]() | \(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\) |
![]() | \(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |
Chọn phương án C.
Theo hình vẽ ta có $$\begin{aligned}
S&=\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}\left(-h(x)\right)\mathrm{\,d}x\\
&=\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x-\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\\
&=\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x.
\end{aligned}$$