Gọi \(\mathscr{D}\) là miền xác định của bất phương trình \(\dfrac{x-1}{\sqrt{2-3x}}\leq0\). Hãy tìm \(\mathscr{D}\).
\(\mathscr{D}=\left(-\infty;\dfrac{3}{2}\right)\) | |
\(\mathscr{D}=\left[\dfrac{2}{3};+\infty\right)\) | |
\(\mathscr{D}=\left(-\infty;\dfrac{2}{3}\right)\) | |
\(\mathscr{D}=\left[\dfrac{2}{3};+\infty\right)\) |
Chọn phương án C.
Điều kiện: \(2-3x>0\Leftrightarrow x<\dfrac{2}{3}\).
Vậy \(\mathscr{D}=\left(-\infty;\dfrac{2}{3}\right)\).