Tính giới hạn \(\lim\dfrac{-n^2+2n+1}{\sqrt{3n^4+2n}}\).
\(-\dfrac{2}{3}\) | |
\(\dfrac{1}{2}\) | |
\(-\dfrac{\sqrt{3}}{3}\) | |
\(-\dfrac{1}{2}\) |
Chọn phương án C.
Dùng máy tính cầm tay:
Chọn phương án C.
\(\begin{aligned}
\lim\dfrac{-n^2+2n+1}{\sqrt{3n^4+2n}}&=\lim\dfrac{n^2\left(-1+\dfrac{2}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^4\left(3+\dfrac{2}{n^4}\right)}}\\
&=\lim\dfrac{n^2\left(-1+\dfrac{2}{n}+\dfrac{1}{n^2}\right)}{n^2\sqrt{3+\dfrac{2}{n^4}}}\\
&=\lim\dfrac{-1+\dfrac{2}{n}+\dfrac{1}{n^2}}{\sqrt{3+\dfrac{2}{n^4}}}\\
&=\dfrac{-1+0+0}{\sqrt{3+0}}=-\dfrac{1}{\sqrt{3}}.
\end{aligned}\)