Cho góc \(\alpha\) thỏa mãn \(\cos\alpha=-\dfrac{\sqrt{5}}{3}\) và \(\pi<\alpha<\dfrac{3\pi}{2}\). Tính \(\tan\alpha\).
\(\tan\alpha=-\dfrac{3}{\sqrt{5}}\) | |
\(\tan\alpha=\dfrac{2}{\sqrt{5}}\) | |
\(\tan\alpha=-\dfrac{4}{\sqrt{5}}\) | |
\(\tan\alpha=-\dfrac{2}{\sqrt{5}}\) |
Chọn phương án B.
Vì \(\pi<\alpha<\dfrac{3\pi}{2}\) nên \(\tan\alpha>0\).
Ta có \(1+\tan^2\alpha=\dfrac{1}{\cos^2\alpha}=\dfrac{9}{5}\).
Suy ra \(\tan^2\alpha=\dfrac{9}{5}-1=\dfrac{4}{5}\).
Vậy \(\tan\alpha=\dfrac{2}{\sqrt{5}}\).