Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{1}{3}\) và \(90^\circ<\alpha<180^\circ\). Tính \(P=\dfrac{2\tan\alpha+3\cot\alpha+1}{\tan\alpha+\cot\alpha}\).
\(P=\dfrac{19+2\sqrt{2}}{9}\) | |
\(P=\dfrac{19-2\sqrt{2}}{9}\) | |
\(P=\dfrac{26-2\sqrt{2}}{9}\) | |
\(P=\dfrac{26+2\sqrt{2}}{9}\) |
Chọn phương án C.
Vì \(90^\circ<\alpha<180^\circ\) nên \(\cot\alpha<0\).
Ta có \(1+\cot^2\alpha=\dfrac{1}{\sin^2\alpha}=9\).
Suy ra \(\cot^2\alpha=8\). Vậy \(\cot\alpha=-2\sqrt{2}\).
Khi đó \(\tan\alpha=\dfrac{1}{\cot\alpha}=\dfrac{1}{-2\sqrt{2}}=-\dfrac{\sqrt{2}}{4}\).
Vậy \(P=\dfrac{2\tan\alpha+3\cot\alpha+1}{\tan\alpha+\cot\alpha}=\dfrac{26-2\sqrt{2}}{9}\).