Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^2+5x-3}{x^2+6x+3}\).
\(-2\) | |
\(+\infty\) | |
\(3\) | |
\(2\) |
Chọn phương án D.
\(\begin{aligned}
\lim\limits_{x\to-\infty}\dfrac{2x^2+5x-3}{x^2+6x+3}&=\lim\limits_{x\to-\infty}\dfrac{2+\dfrac{5}{x}-\dfrac{3}{x^2}}{1+\dfrac{6}{x}+\dfrac{3}{x^2}}\\
&=\dfrac{2+0-0}{1+0+0}=2.
\end{aligned}\)