Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^3-7x^2+11}{3x^6+2x^5-5}\).
![]() | \(-2\) |
![]() | \(+\infty\) |
![]() | \(0\) |
![]() | \(-\infty\) |
Chọn phương án C.
\(\begin{aligned}
\lim\limits_{x\to-\infty}\dfrac{2x^3-7x^2+11}{3x^6+2x^5-5}&=\lim\limits_{x\to-\infty}\dfrac{\dfrac{2}{x^3}-\dfrac{7}{x^4}+\dfrac{11}{x^6}}{3+\dfrac{2}{x}-\dfrac{5}{x^6}}\\
&=\dfrac{0-0+0}{3+0-0}=0.
\end{aligned}\)