Cho hàm số \(f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([a;b]\), \(f(b)=5\), \(\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x=3\sqrt{5}\). Tính \(f(a)\).
\(f(a)=3\sqrt{5}\) | |
\(f(a)=\sqrt{5}\left(\sqrt{5}-3\right)\) | |
\(f(a)=\sqrt{3}\left(\sqrt{5}-3\right)\) | |
\(f(a)=\sqrt{5}\left(3-\sqrt{5}\right)\) |
Chọn phương án B.
\(\begin{eqnarray*}
&\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x&=3\sqrt{5}\\
\Leftrightarrow&f(x)\bigg|_a^b&=3\sqrt{5}\\
\Leftrightarrow&f(b)-f(a)&=3\sqrt{5}\\
\Leftrightarrow&5-f(a)&=3\sqrt{5}\\
\Leftrightarrow&f(a)&=5-3\sqrt{5}\\
&&=\sqrt{5}\left(\sqrt{5}-3\right).
\end{eqnarray*}\)