Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
\(5\) | |
\(4\) | |
\(3\) | |
\(2\) |
Chọn phương án C.
\(\begin{aligned}
\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x&=\displaystyle\int\limits_{0}^{1}\left(x-1+\dfrac{2}{x+1}\right)\mathrm{\,d}x\\
&=\left(\dfrac{x^2}{2}-x+2\ln|x+1|\right)\bigg|_0^1\\
&=-\dfrac{1}{2}+2\ln2.
\end{aligned}\)
Theo đó \(\begin{cases}
a=-\dfrac{1}{2}\\
b=c=2.
\end{cases}\)
Suy ra \(2a+b+c=2\cdot\left(-\dfrac{1}{2}\right)+2+2=3\).