Tìm các họ nghiệm của phương trình $$\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0$$
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{4}+k\pi\\ x=-\dfrac{\pi}{6}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\pi\\ x=\dfrac{\pi}{3}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{4}+k\pi\\ x=-\dfrac{\pi}{3}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=-\dfrac{\pi}{4}+k\pi\\ x=-\dfrac{\pi}{3}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
Chọn phương án C.
\(\begin{aligned}
&\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0\\
\Leftrightarrow&\left[\begin{array}{l}\tan x=1\\ \tan x=-\sqrt{3}\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}x=\dfrac{\pi}{4}+k\pi\\ x=-\dfrac{\pi}{3}+k\pi\end{array}\right.\;(k\in\mathbb{Z})
\end{aligned}\)