Giải phương trình \(\dfrac{\sin2x}{1-\cos x}=0\).
\(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.,\,k\in\mathbb{Z}\) | |
\(x=\dfrac{k\pi}{2},\,k\in\mathbb{Z}\) | |
\(x=k\pi,\,k\in\mathbb{Z}\) | |
\(x=\pm\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\) |
Chọn phương án A.
\(\begin{aligned}
\dfrac{\sin2x}{1-\cos x}=0\Leftrightarrow&\begin{cases}
1-\cos x\neq0\\ \sin2x=0
\end{cases}\\
\Leftrightarrow&\begin{cases}
\cos x\neq1\\ 2x=k\pi
\end{cases}\\
\Leftrightarrow&\begin{cases}
x\neq k2\pi\\ x=k\dfrac{\pi}{2}
\end{cases}\\
\text{hay}&\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.,\,k\in\mathbb{Z}
\end{aligned}\)