Giải phương trình \(\cos^2x+\cos x=0\).
\(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) | |
\(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) | |
\(\left[\begin{array}{l}x=\pm \dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) | |
\(x=\dfrac{k\pi}{2}\,\left(k\in\mathbb{Z}\right)\) |
Chọn phương án A.
\(\begin{aligned}
\cos^2x+\cos x=0\Leftrightarrow&\left[\begin{array}{l}\cos x=0\\ \cos x=-1\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)
\end{aligned}\)