Giải phương trình \(\sqrt{3}\sin x+\cos x=2\).
![]() | \(x=\dfrac{\pi}{2}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{3}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{6}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{2\pi}{3}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
Chọn phương án B.
\(\begin{eqnarray*}
&\sqrt{3}\sin x+\cos x&=2\\
\Leftrightarrow&\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x&=1\\
\Leftrightarrow&\sin\dfrac{\pi}{3}\sin x+\cos x\cos\dfrac{\pi}{3}&=1\\
\Leftrightarrow&\cos\left(x-\dfrac{\pi}{3}\right)&=0\\
\Leftrightarrow&x-\dfrac{\pi}{3}&=k2\pi\\
\Leftrightarrow&x=\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}
\end{eqnarray*}\)