Từ tập hợp \(P\) gồm \(2018\) điểm phân biệt, có bao nhiêu đoạn thẳng khác nhau được tạo ra?
\(\dfrac{2018!}{2016!}\) | |
\(\dfrac{2016!}{2!}\) | |
\(\dfrac{2018!}{2!}\) | |
\(\dfrac{2018!}{2016!\cdot2!}\) |
Chọn phương án D.
Số đoạn thẳng được tạo ra từ \(2018\) điểm phân biệt đã cho là một tổ hợp chập \(2\) của \(2018\), tức là có \(\mathrm{C}_{2018}^2=\dfrac{2018!}{2016!\cdot2!}\) đoạn thẳng.