Giới hạn \(\lim\limits_{x\to2}\dfrac{x^2-3x+2}{x^3-x^2+x-6}\) bằng
![]() | \(0\) |
![]() | \(\dfrac{1}{7}\) |
![]() | \(\dfrac{1}{9}\) |
![]() | Không tồn tại |
Chọn phương án C.
\(\begin{aligned}
\lim\limits_{x\to2}\dfrac{x^2-3x+2}{x^3-x^2+x-6}&=\lim\limits_{x\to2}\dfrac{(x-1)(x-2)}{(x-2)\left(x^2+x+3\right)}\\
&=\lim\limits_{x\to2}\dfrac{x-1}{x^2+x+3}\\
&=\dfrac{2-1}{2^2+2+3}=\dfrac{1}{9}.
\end{aligned}\)