Tích phân \(I=\displaystyle\int\limits_{0}^{\pi}x^2\sin x\mathrm{\,d}x\) bằng
\(\pi^2-4\) | |
\(\pi^2+4\) | |
\(2\pi^2-3\) | |
\(2\pi^2+3\) |
Chọn phương án A.
Khi đó $$\begin{aligned}I&=-x^2\cos x\bigg|_0^{\pi}+2\displaystyle\int\limits_{0}^{\pi}x\cos x\mathrm{\,d}x\\ &=\pi^2+2\displaystyle\int\limits_{0}^{\pi}x\cos x\mathrm{\,d}x.\end{aligned}$$
Khi đó $$\begin{aligned}I&=\pi^2+2\left(x\sin x\bigg|_0^{\pi}-\displaystyle\int\limits_{0}^{\pi}\sin x\mathrm{\,d}x\right)\\ &=\pi^2+2\cos x\bigg|_0^{\pi}=\pi^2-4.\end{aligned}$$