Đồ thị hàm số \(y=x^4+3x^2-4\) cắt trục hoành tại bao nhiêu điểm?
\(4\) | |
\(2\) | |
\(3\) | |
\(0\) |
Chọn phương án B.
Phương trình hoành độ giao điểm $$\begin{aligned}
y=0\Leftrightarrow&\,x^4+3x^2-4=0\\
\Leftrightarrow&\,\left(x^2-1\right)\left(x^2+4\right)=0\\
\Leftrightarrow&\left[\begin{array}{ll}x^2-1=0\\
x^2+4=0 &\text{(vô nghiệm)}\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}x=1\\
x=-1\end{array}\right.
\end{aligned}$$
Vậy đồ thị hàm số \(y=x^4+3x^2-4\) có \(2\) điểm chung với trục hoành.