Ngân hàng bài tập
A

Tính số gia của hàm số \(y=\dfrac{x^2}{2}\) tại điểm \(x_0=-1\) ứng với số gia \(\Delta x\).

\(\Delta y=\dfrac{1}{2}\left(\Delta x\right)^2-\Delta x\)
\(\Delta y=\dfrac{1}{2}\left[\left(\Delta x\right)^2-\Delta x\right]\)
\(\Delta y=\dfrac{1}{2}\left[\left(\Delta x\right)^2+\Delta x\right]\)
\(\Delta y=\dfrac{1}{2}\left(\Delta x\right)^2+\Delta x\)
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
15:03 25/04/2021

Chọn phương án A.

\(\begin{aligned}
\Delta y&=f\left(x_0+\Delta x\right)-f\left(x_0\right)\\
&=f\left(-1+\Delta x\right)-f\left(-1\right)\\
&=\dfrac{\left(-1+\Delta x\right)^2}{2}-\dfrac{1}{2}\\
&=\dfrac{1-2\Delta x+\left(\Delta x\right)^2}{2}-\dfrac{1}{2}\\
&=-\Delta x+\dfrac{1}{2}\left(\Delta x\right)^2.
\end{aligned}\)