Tính tổng $$S=\mathrm{C}_{2n}^0+\mathrm{C}_{2n}^1+\mathrm{C}_{2n}^2+\cdots+\mathrm{C}_{2n}^{2n}$$
Ta có $$(1+x)^{2n}=\mathrm{C}_{2n}^0+\mathrm{C}_{2n}^1x+\mathrm{C}_{2n}^2x^2+\cdots+\mathrm{C}_{2n}^{2n}x^{2n}$$
Cho \(x=1\) ta được $$(1+1)^{2n}=\mathrm{C}_{2n}^0+\mathrm{C}_{2n}^1+\mathrm{C}_{2n}^2+\cdots+\mathrm{C}_{2n}^{2n}$$
Vậy \(S=2^{2n}\).