Ngân hàng bài tập

Xét khai triển của \(\left(x+\dfrac{1}{x}\right)^{10}\).

  1. Viết số hạng thứ \(7\) của khai triển.
  2. Tìm số hạng không chứa \(x\) trong khai triển.
1 lời giải Huỳnh Phú Sĩ
Trở lại Tương tự
Thêm lời giải
1 lời giải
Huỳnh Phú Sĩ
20:10 28/06/2021

Số hạng thứ \(k+1\): $$T_{k+1}=\mathrm{C}_{10}^kx^k\left(\dfrac{1}{x}\right){10-k}=\mathrm{C}_{10}^kx^{2k-10}$$

  1. Số hạng thứ \(7\) là $$T_7=T_{6+1}=\mathrm{C}_{10}^6x^{2\cdot6-10}=210x^2$$
  2. Số hạng không chứa \(x\) có $$2k-10=0\Leftrightarrow k=5$$Do đó số hạng không chứa \(x\) là $$T_6=T_{5+1}=\mathrm{C}_{10}^5x^{2\cdot5-10}=252$$